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Syntax(M)
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How to check if m = m'?
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N, the normal form of M

Syntax(N)

N:=c | N+c

Observation: all expressions can be rearranged to left-
associative form.

Decide m = m': Re-arrange m and m' into left-associative
form, then compare them syntactically.
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Normalization of M

nf : M-> N
nf ¢ = ¢
nf (m+ m') = (nf m) (nf m")

where
. : N> N->N
n C=n+_cC
(n'* + ¢) = (n n') + c




Simply typed lambda calculus (STLC)

Syntax(STLC)
T := 6 T > T

t :=x | AxeTt.t | tt

[ = - [, X:T



STLC typing

Typing(+)
[(x) =t , xect -t : €'
Var Lam
' - X : T - Ax:t.t : Tt = €
r- t : t = t' ' - t' : <t
App

r -t t' : t'



STLC equivalence

Equivalence(=)

M, x:ct -t : €' - t' :t
r- (xx:t.t) t" =t [t"/ x]: 1

r'-t : t = t'

N
r~- t= (AXx:t.t x) : T=-t"
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Decide t = t': Normalize t and t' into a suitable normal
form, then compare them syntactically.
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Normal forms for STLC

Decide t = t': Normalize t and t' into a suitable normal
form, then compare them syntactically.

But which normal form to use?
B-short form: terms without any B-redex like (Ax:t.t) t'.

Problem: f = (Ax:t.f x) : T = t', n-equivalence for open
terms.
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Normal forms for STLC

B-short n-long form: terms without any B-redex, and
functions are fully n-expanded.

For example, g : (6 = 6) = 6 = 6 expands to:
Af:6 = 6. Ax:0. g (Ay:0.f y) X
Note that we also expanded ¥ : 6 = 0.

Property: normal forms of type t = t' 1s always in the
form of Ax:t.n, where n is a normal form of type tT'.
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Normalization of STLC
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nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

where
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Normalization of STLC

nf : V{iIr t} > Tm T Tt->NfT T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

where
$ s v{rtt'}>NfFr(xt=1t')>NTT->NT T
(A:t.t) $t" =11t [t/ x] !

But substitution does not preserve normal forms!



Hereditary substitution

nf : V{ir t} > Tm T t->NfT T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

where
$ s v{rtt'}>NfFr(xt=1t')>NTT->NT T
(Ax:T.t) $t' =t [ t" / x Jhe

Solution: define a hereditary substitution that keeps
reducing the occurred PB-redexes.
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Have g : (6 = 06) = 6 = 6.
nf (Ah. g h) Ah. nf(g h)

Ah. (nf g) $ (nf h)

Ah. (n-exp g) $ (n-exp h)

Ah. (AMf x. g (Az. £ z) x) $ (Ay. hy)

M. (Ax. g (Az. £ z) x) [ (Ay. hy) / f ]he

Ah. Ax. g (Az. (Ay. hy) z) x

Ah. Ax. g (Az. h z) X



Have g : (6 = 0) = 6 = 6.

nf (Ah. g h) = Ah. Ax. g (Az. h z) X



Example

Have g : (6 = 0) = 6 = 6.

nf (Ah. g h)
nf g = n-exp

Indeed, Ah. g h

g

Ah. Ax. g (Az. h z) X

AMf. Ax. g (Az. £ z) X

by n.



Correctness?

Soundness: Ah. g h =g = nf (Ah. g h) = nf g

Completeness: g

nf g =Af. Ax. g (Az. £ z) X

Uniqueness: emb n = emb n' = n = n'



Correctness?

Soundness: t = t' = nf t = nf t'

Completeness: t = emb (nf t)

Uniqueness: emb n = emb n® = n = n'



Algebraic story of M

Syntax(M)
M:=c | M+M

Equivalence(=)

(m+m') +m'"" ' =m+ (m" + m"")



An algebra of M

Def. An M-Algebra (X, char, +, =) is a set X with operators

char : >~ » X
4 t X > X > X

and an equivalence relation = over X such that

V{x x" x""}. (x + x") + x"'

X + (x" + x"").

M is an M-Algebra.



Initial algebra

Def. A homomorphism between M-Algebras (X, char, +, =) and
(Y, char', +', =') is a function f : X » Y such that

f (char c) = char' c
f (x + x') = (f x) +" (f x")
X =

X' = f x ="' f x'
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Initial algebra

Def. A homomorphism between M-Algebras (X, char, +, =) and
(Y, char', +', =') is a function f : X » Y such that

f (char c) = char' c
f (x + x') = (f x) +" (f x")
X = X' = f x ="' f x'

Def. (X, char, +, =) 1is initial if there exists a unique
homomorphism from X to any other M-Algebra.

Thm. M is the initial M-Algebra.



Normal form as M-Alg

Since M is initial, for any (X, char', +', =') we have

ind : M > X
ind ¢ = char' c

ind (m + m') = (ind m) +' (ind m")

such that m = m' = (ind m) =' (ind m").



Normal form as M-Alg

Let N be the set of normal forms. If we have char' and +'
such that (N, char', +', =) is an M-Algebra, then we have

nf : M > N
nf ¢ = char' c

nf (m+m') = (nfm)+" (nfm")

such that m=m' = (nfm) = (nfm")!



(Recall) Normalization of M

nf (m+ m') = (nf m) (nf m")

where
H_: N> N->N
n C=n+_C
n (n" + ¢) = (n n') + c




Normal form as M-Alg

Let N be the set of normal forms. If we have such that
(x x') + x''" =X (x' x'"'"), then we have

nf : M > N

nf ¢ = c

nf (m+ m') = (nf m) (nf m")

such that m=m' = (nfm) = (nfm").

I.e. nf is sound if 1s associative.




[somorphism up to =

Def. M-Algebras (X, char, +, =) and (Y, char', +', =') are
isomorphic up to their equivalences if there exist functions
f : X>Yand g : Y > X such that

Vx. g (f x) = x

vy. £ (g y) =" Y.

Note: This definition works for all sets with an equivalence
relation.



Completeness and uniqueness

If (N, , =) 1s isomorphic to M up to equivalence, then

such that emb (nf m)
nf (emb n) = n.

1]
=



Completeness and uniqueness

If (N, , =) 1s isomorphic to M up to equivalence, then

such that emb (nf m)
nf (emb n) = n.

1]
=

emb n = emb n' = nf (emb n) = nf (emb n') = n = n



Embedding of N

emb : N > M
emb ¢ = C
emb (n + c) = emb n + C

Note: emb (n n') # (emb n) + (emb n'), they are only
equivalent, so emb is not a homomorphism!




Algebraic story of M

1. Define M-Algebra (X, char, +, =) where M is the
initial algebra.
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Algebraic story of M

1. Define M-Algebra (X, char, +, =) where M is the
initial algebra.

2. Find N, char', +' such that they form an M-Algebra
(N, char', +', =).
— have sound normalization algorithm nf.

3. Show that N is isomorphic to M up to equivalence.
— nf is complete.
— N has a unique normal forms.
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STLC-Algebra

1. Define STLC-Algebra (X, var, lam, app, sub, =) where
Tm is the initial algebra, following (Fiore 2002).

2. Find Nf, var', lam', app', sub’' such that they form an
STLC-Algebra (Nf, var', lam', app', sub' =).
— have sound normalization algorithm nf.

3. Show that Nf is isomorphic to Tm up to equivalence.
— nf 1s complete.
— Tm has a unique normal forms.



(Recall) Hereditary substitution

nf : V{ t} > Tm T Tt > Nf T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (t t') = (nf t) $ (nf t")

where
_$_:V{F'E'C'}—)N'Fr(t:>t')_>N.Fr-c_>N_Fr_E|
(Ax:T.t) $t" =t [ t" / x Jhe
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Algebraic perspective at formalization

- Simpler, more principled proofs than previous work
(Keller and Altenkirch 2010), only need induction.

- Termination: hereditary substitution in structural
recursive form.

- Proof goals: clear indication from the algebraic
signature.
E.g. (t t') [ t'" / x ]he =
(t[t'"" / x ]he) $ (' [ t'" / x ]he)



Thank you!

...and questions?

Speaker email: yh4i9@cam.ac.uk
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Intrinsic syntax of terms

data Var : Con » Ty » Set where
vz : V{IT t} » Var (' , T) T
vs : V{Ftt'}>VarlTt->Var (', T') T

data Tm : Con » Ty -» Set where
var : V{f t} > Var T t»>Tm Tl T
lam : Vv{Frtt'} > Tm (r, Tty t' > Tm I (t = t')
app : v{rtt'} > Tmrn(ct=1t')->Tmrt->"Tm Tl T



Intrinsic syntax of normal forms

mutual
data Nf : Con » Ty » Set where
lam : V{TF Tt t'} > NfF (T, Ty T" > NfF T (Tt = t')
\2 : V{I'} > Ne Tl 1> Nf T 1

data Ne : Con » Ty -» Set where
var : V{If t} > Var T t > NeTl T
app : V{ft t'} > NelN(t =1t') > NfIT t->Ne Tl T



Colour scheme

Keywords

Parenthesis
Constructors
Functions

Sets and types
Highlights
Text
Expressions
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