Substitution, Normalization, and Formalization

Marcelo Fiore & Yulong Huang

University of Cambridge, UK

S-REPLS 16, Imperial College London
April 2025

M, the warm-up language

Syntax(M)
M:=c | M+M

M, the warm-up language

Syntax(M)
M:=c | M+M

Equivalence(=)

(m+m') +m'"" ' =m+ (m" + m"")

M, the warm-up language

Syntax(M)
M:=c | M+M

Equivalence(=)

(m+m') +m'"" ' =m+ (m" + m"")

How to check if m = m'?

N, the normal form of M

Syntax(N)

N:=c | N+ c

N, the normal form of M

Syntax(N)

N:=c | N+c

Observation: all expressions can be rearranged to left-
associative form.

Decide m = m': Re-arrange m and m' into left-associative
form, then compare them syntactically.

Normalization of M

Normalization of M

nf : M-> N

Normalization of M

nf : M-> N
nf ¢c = C

Normalization of M

nf : M >N
nf c = cC
nf (m +m'") =

Normalization of M

nf : M-> N
nf ¢ = ¢
nf (m+ m') = (nf m) (nf m")

where

: N> N->N

Normalization of M

nf : M-> N
nf ¢ = ¢
nf (m+ m') = (nf m) (nf m")

where

. : N> N->N
n C=hn+C

Normalization of M

nf : M-> N
nf ¢ = ¢
nf (m+ m') = (nf m) (nf m")

where
. : N> N->N
n C=n+_cC
(n'* + ¢) = (n n') + c

Simply typed lambda calculus (STLC)

Syntax(STLC)
T := 6 T > T

t :=x | AxeTt.t | tt

[= - [, X:T

STLC typing

Typing(+)
[(x) =t , xect -t : €'
Var Lam
' - X : T - Ax:t.t : Tt = €
r- t : t = t' ' - t' : <t
App

r -t t' : t'

STLC equivalence

Equivalence(=)

M, x:ct -t : €' - t' :t
r- (xx:t.t) t" =t [t"/ x]: 1

r'-t : t = t'

N
r~- t= (AXx:t.t x) : T=-t"

Normal forms for STLC

Decide t = t': Normalize t and t' into a suitable normal
form, then compare them syntactically.

But which normal form to use?

Normal forms for STLC

Decide t = t': Normalize t and t' into a suitable normal
form, then compare them syntactically.

But which normal form to use?
B-short form: terms without any B-redex like (Ax:t.t) t'.

Problem: f = (Ax:t.f x) : T = t', n-equivalence for open
terms.

Normal forms for STLC

B-short n-long form: terms without any B-redex, and
functions are fully n-expanded.

Normal forms for STLC

B-short n-long form: terms without any B-redex, and
functions are fully n-expanded.

For example, g : (6 = 6) = 6 = 6 expands to:
Af:6 = 6. Ax:0. g (Ay:0.f y) X
Note that we also expanded ¥ : 6 = 0.

Normal forms for STLC

B-short n-long form: terms without any B-redex, and
functions are fully n-expanded.

For example, g : (6 = 6) = 6 = 6 expands to:
Af:6 = 6. Ax:0. g (Ay:0.f y) X
Note that we also expanded ¥ : 6 = 0.

Property: normal forms of type t = t' 1s always in the
form of Ax:t.n, where n is a normal form of type tT'.

Normalization of STLC

Normalization of STLC

nf : Vv{r t} > Tm T T->Nf Tl T

Notation: t : Tm ' Tt means that ' v t : T.

Normalization of STLC

nf : Vv{r t} > Tm T T->Nf Tl T
nf X = n-exp X

Notation: t : Tm ' Tt means that ' v t : T.

Normalization of STLC

nf : Vv{r t} > Tm T T->Nf Tl T
nf X = n-exp X
nf (Ax:t.t) = Ax:t. (nf t)

Notation: t : Tm ' Tt means that ' v t : T.

Normalization of STLC

nf : Vv{r t} > Tm T T->Nf Tl T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

Notation: t : Tm ' Tt means that ' v t : T.

Normalization of STLC

nf : V{iIr t} > Tm T Tt->NfT T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

where
$ s v{rtt'}>NfFr(xt=1t')>NTT->NT T
(Ax:t.t) $t' =t [t / x]

Notation: t : Tm ' Tt means that ' v t : T.

Normalization of STLC

nf : V{iIr t} > Tm T Tt->NfT T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

where
$ s v{rtt'}>NfFr(xt=1t')>NTT->NT T
(A:t.t) $t" =11t [t/ x] !

But substitution does not preserve normal forms!

Hereditary substitution

nf : V{ir t} > Tm T t->NfT T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (tt') = (nft)$ (nft")

where
$ s v{rtt'}>NfFr(xt=1t')>NTT->NT T
(Ax:T.t) $t' =t [t" / x Jhe

Solution: define a hereditary substitution that keeps
reducing the occurred PB-redexes.

Have g : (6 = 06) = 6 = 6.

nf (Ah. g h) = Ah. nf(g h)

Have g : (6 = 06) = 6 = 6.

nf (Ah. g h) Ah. nf(g h)

Ah. (nf g) $ (nf h)

Have g : (6 = 06) = 6 = 6.

nf (Ah. g h) Ah. nf(g h)
Ah. (nf g) $ (nf h)

Ah. (n-exp g) $ (n-exp h)

Have g : (6 = 06) = 6 = 6.

nf (Ah. g h) Ah. nf(g h)
Ah. (nf g) $ (nf h)
Ah. (n-exp g) % (n-exp h)

Ah. (AMf x. g (Az. £ z) x) $ (Ay. hy)

Have g : (6 = 06) = 6 = 6.
nf (Ah. g h) Ah. nf(g h)

Ah. (nf g) $ (nf h)

Ah. (n-exp g) $ (n-exp h)

Ah. (AMf x. g (Az. £ z) x) $ (Ay. hy)

M. (Ax. g (Az. £ z) x) [(Ay. hy) / f]he

Have g : (6 = 06) = 6 = 6.
nf (Ah. g h) Ah. nf(g h)

Ah. (nf g) $ (nf h)

Ah. (n-exp g) $ (n-exp h)

Ah. (AMf x. g (Az. £ z) x) $ (Ay. hy)

M. (Ax. g (Az. £ z) x) [(Ay. hy) / f]he

Ah. Ax. g (Az. (Ay. h y) 2) X

Have g : (6 = 06) = 6 = 6.
nf (Ah. g h) Ah. nf(g h)

Ah. (nf g) $ (nf h)

Ah. (n-exp g) $ (n-exp h)

Ah. (AMf x. g (Az. £ z) x) $ (Ay. hy)

M. (Ax. g (Az. £ z) x) [(Ay. hy) / f]he

Ah. Ax. g (Az. (Ay. hy) z) x

Ah. Ax. g (Az. h z) X

Have g : (6 = 0) = 6 = 6.

nf (Ah. g h) = Ah. Ax. g (Az. h z) X

Example

Have g : (6 = 0) = 6 = 6.

nf (Ah. g h)
nf g = n-exp

Indeed, Ah. g h

g

Ah. Ax. g (Az. h z) X

AMf. Ax. g (Az. £ z) X

by n.

Correctness?

Soundness: Ah. g h =g = nf (Ah. g h) = nf g

Completeness: g

nf g =Af. Ax. g (Az. £ z) X

Uniqueness: emb n = emb n' = n = n'

Correctness?

Soundness: t = t' = nf t = nf t'

Completeness: t = emb (nf t)

Uniqueness: emb n = emb n® = n = n'

Algebraic story of M

Syntax(M)
M:=c | M+M

Equivalence(=)

(m+m') +m'"" ' =m+ (m" + m"")

An algebra of M

Def. An M-Algebra (X, char, +, =) is a set X with operators

char : >~ » X
4 t X > X > X

and an equivalence relation = over X such that

V{x x" x""}. (x + x") + x"'

X + (x" + x"").

M is an M-Algebra.

Initial algebra

Def. A homomorphism between M-Algebras (X, char, +, =) and
(Y, char', +', =') is a function f : X » Y such that

f (char c) = char' c
f (x + x') = (f x) +" (f x")
X =

X' = f x ="' f x'

Initial algebra

Def. A homomorphism between M-Algebras (X, char, +, =) and
(Y, char', +', =') is a function f : X » Y such that

f (char c) = char' c
f (x + x') = (f x) +" (f x")
X = X' = f x ="' f x'

Def. (X, char, +, =) 1is initial if there exists a unique
homomorphism from X to any other M-Algebra.

Initial algebra

Def. A homomorphism between M-Algebras (X, char, +, =) and
(Y, char', +', =') is a function f : X » Y such that

f (char c) = char' c
f (x + x') = (f x) +" (f x")
X = X' = f x ="' f x'

Def. (X, char, +, =) 1is initial if there exists a unique
homomorphism from X to any other M-Algebra.

Thm. M is the initial M-Algebra.

Normal form as M-Alg

Since M is initial, for any (X, char', +', =') we have

ind : M > X
ind ¢ = char' c

ind (m + m') = (ind m) +' (ind m")

such that m = m' = (ind m) =' (ind m").

Normal form as M-Alg

Let N be the set of normal forms. If we have char' and +'
such that (N, char', +', =) is an M-Algebra, then we have

nf : M > N
nf ¢ = char' c

nf (m+m') = (nfm)+" (nfm")

such that m=m' = (nfm) = (nfm")!

(Recall) Normalization of M

nf (m+ m') = (nf m) (nf m")

where
H_: N> N->N
n C=n+_C
n (n" + ¢) = (n n') + c

Normal form as M-Alg

Let N be the set of normal forms. If we have such that
(x x') + x''" =X (x' x'"'"), then we have

nf : M > N

nf ¢ = c

nf (m+ m') = (nf m) (nf m")

such that m=m' = (nfm) = (nfm").

I.e. nf is sound if 1s associative.

[somorphism up to =

Def. M-Algebras (X, char, +, =) and (Y, char', +', =') are
isomorphic up to their equivalences if there exist functions
f : X>Yand g : Y > X such that

Vx. g (f x) = x

vy. £ (g y) =" Y.

Note: This definition works for all sets with an equivalence
relation.

Completeness and uniqueness

If (N, , =) 1s isomorphic to M up to equivalence, then

such that emb (nf m)
nf (emb n) = n.

1]
=

Completeness and uniqueness

If (N, , =) 1s isomorphic to M up to equivalence, then

such that emb (nf m)
nf (emb n) = n.

1]
=

emb n = emb n' = nf (emb n) = nf (emb n') = n = n

Embedding of N

emb : N > M
emb ¢ = C
emb (n + c) = emb n + C

Note: emb (n n') # (emb n) + (emb n'), they are only
equivalent, so emb is not a homomorphism!

Algebraic story of M

1. Define M-Algebra (X, char, +, =) where M is the
initial algebra.

Algebraic story of M

1. Define M-Algebra (X, char, +, =) where M is the
initial algebra.

2. Find N, char', +' such that they form an M-Algebra
(N, char', +', =).

— have sound normalization algorithm nf.

Algebraic story of M

1. Define M-Algebra (X, char, +, =) where M is the
initial algebra.

2. Find N, char', +' such that they form an M-Algebra
(N, char', +', =).
— have sound normalization algorithm nf.

3. Show that N is isomorphic to M up to equivalence.
— nf is complete.
— N has a unique normal forms.

STLC-Algebra

1. Define STLC-Algebra (X, var, lam, app, sub, =) where
Tm is the initial algebra, following (Fiore 2002).

STLC-Algebra

1. Define STLC-Algebra (X, var, lam, app, sub, =) where
Tm is the initial algebra, following (Fiore 2002).

2. Find Nf, var', lam', app', sub’' such that they form an
STLC-Algebra (Nf, var', lam', app', sub' =).
— have sound normalization algorithm nf.

STLC-Algebra

1. Define STLC-Algebra (X, var, lam, app, sub, =) where
Tm is the initial algebra, following (Fiore 2002).

2. Find Nf, var', lam', app', sub’' such that they form an
STLC-Algebra (Nf, var', lam', app', sub' =).
— have sound normalization algorithm nf.

3. Show that Nf is isomorphic to Tm up to equivalence.
— nf 1s complete.
— Tm has a unique normal forms.

(Recall) Hereditary substitution

nf : V{ t} > Tm T Tt > Nf T
nf X = n-exp X

nf (Ax:t.t) = Ax:t. (nf t)

nf (t t') = (nf t) $ (nf t")

where
$:V{F'E'C'}—)N'Fr(t:>t')_>N.Fr-c_>N_Fr_E|
(Ax:T.t) $t" =t [t" / x Jhe

Algebraic perspective at formalization

- Simpler, more principled proofs than previous work
(Keller and Altenkirch 2010), only need induction.

Algebraic perspective at formalization

- Simpler, more principled proofs than previous work
(Keller and Altenkirch 2010), only need induction.

- Termination: hereditary substitution in structural
recursive form

Algebraic perspective at formalization

- Simpler, more principled proofs than previous work
(Keller and Altenkirch 2010), only need induction.

- Termination: hereditary substitution in structural
recursive form

- Proof goals: clear indication from the algebraic
signature.
E.g. t [t' / x]he = t when x is not free in t

Algebraic perspective at formalization

- Simpler, more principled proofs than previous work
(Keller and Altenkirch 2010), only need induction.

- Termination: hereditary substitution in structural
recursive form.

- Proof goals: clear indication from the algebraic
signature.
E.g. (t t') [t'" / x]he =
(t[t'"" / x]he) $ (' [t'" / x]he)

Thank you!

...and questions?

Speaker email: yh4i9@cam.ac.uk

References

Fiore, Marcelo. "Semantic analysis of normalisation by evaluation for typed lambda
calculus."™ Proceedings of the 4th ACM SIGPLAN international conference on Principles
and practice of declarative programming. 2002.

Keller, Chantal, and Thorsten Altenkirch. "Hereditary substitutions for simple types,
formalized." Proceedings of the third ACM SIGPLAN workshop on Mathematically
structured functional programming. 2010.

Intrinsic syntax of terms

data Var : Con » Ty » Set where
vz : V{IT t} » Var (' , T) T
vs : V{Ftt'}>VarlTt->Var (', T') T

data Tm : Con » Ty -» Set where
var : V{f t} > Var T t»>Tm Tl T
lam : Vv{Frtt'} > Tm (r, Tty t' > Tm I (t = t')
app : v{rtt'} > Tmrn(ct=1t')->Tmrt->"Tm Tl T

Intrinsic syntax of normal forms

mutual
data Nf : Con » Ty » Set where
lam : V{TF Tt t'} > NfF (T, Ty T" > NfF T (Tt = t')
\2 : V{I'} > Ne Tl 1> Nf T 1

data Ne : Con » Ty -» Set where
var : V{If t} > Var T t > NeTl T
app : V{ft t'} > NelN(t =1t') > NfIT t->Ne Tl T

Colour scheme

Keywords

Parenthesis
Constructors
Functions

Sets and types
Highlights
Text
Expressions

	Slide 1: Substitution, Normalization, and Formalization
	Slide 2: M, the warm-up language
	Slide 3: M, the warm-up language
	Slide 4: M, the warm-up language
	Slide 5: N, the normal form of M
	Slide 6: N, the normal form of M
	Slide 7: Normalization of M
	Slide 8: Normalization of M
	Slide 9: Normalization of M
	Slide 10: Normalization of M
	Slide 11: Normalization of M
	Slide 12: Normalization of M
	Slide 13: Normalization of M
	Slide 14: Simply typed lambda calculus (STLC)
	Slide 15: STLC typing
	Slide 16: STLC equivalence
	Slide 17: Normal forms for STLC
	Slide 18: Normal forms for STLC
	Slide 19: Normal forms for STLC
	Slide 20: Normal forms for STLC
	Slide 21: Normal forms for STLC
	Slide 22: Normalization of STLC
	Slide 23: Normalization of STLC
	Slide 24: Normalization of STLC
	Slide 25: Normalization of STLC
	Slide 26: Normalization of STLC
	Slide 27: Normalization of STLC
	Slide 28: Normalization of STLC
	Slide 29: Hereditary substitution
	Slide 30: Example
	Slide 31: Example
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: Correctness?
	Slide 40: Correctness?
	Slide 41: Algebraic story of M
	Slide 42: An algebra of M
	Slide 43: Initial algebra
	Slide 44: Initial algebra
	Slide 45: Initial algebra
	Slide 46: Normal form as M-Alg
	Slide 47: Normal form as M-Alg
	Slide 48: (Recall) Normalization of M
	Slide 49: Normal form as M-Alg
	Slide 50: Isomorphism up to ≡
	Slide 51: Completeness and uniqueness
	Slide 52: Completeness and uniqueness
	Slide 53: Embedding of N
	Slide 54: Algebraic story of M
	Slide 55: Algebraic story of M
	Slide 56: Algebraic story of M
	Slide 57: STLC-Algebra
	Slide 58: STLC-Algebra
	Slide 59: STLC-Algebra
	Slide 60: (Recall) Hereditary substitution
	Slide 61: Algebraic perspective at formalization
	Slide 62: Algebraic perspective at formalization
	Slide 63: Algebraic perspective at formalization
	Slide 64: Algebraic perspective at formalization
	Slide 65: Thank you!
	Slide 66: References
	Slide 67: Intrinsic syntax of terms
	Slide 68: Intrinsic syntax of normal forms
	Slide 69: Colour scheme

