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Defunctionalization with Dependent Types∗
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The defunctionalization translation that eliminates higher-order functions from programs forms a key part

of many compilers. However, defunctionalization for dependently-typed languages has not been formally

studied.

We present the first formally-specified defunctionalization translation for a dependently-typed language

and establish key metatheoretical properties such as soundness and type preservation. The translation is

suitable for incorporation into type-preserving compilers for dependently-typed languages.
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1 INTRODUCTION

Types are increasingly used not merely for classification (i.e. in identifying a subset of programs
with desirable properties), but for compilation. A type-preserving compiler, organised as a series of
translations between two or more typed languages [e.g. Bowman and Ahmed 2018; Bowman et al.
2018; Morrisett et al. 1999; Tarditi et al. 1996; Xi and Harper 2001], can support features such as
type-driven elaboration of source programs intomore explicit core calculi [Kovács 2020;Wadler and Blott
1989], translation of disparate source features into a simple uniform core [Sulzmann et al. 2007]
and type-driven optimizations [Tarditi et al. 1996]. More generally, type-preserving translations
between intermediate languages can increase confidence in correctness of the compilation pro-
cess [Patrignani et al. 2019].
As type systems increase in sophistication, defining type-preserving presents new challenges.

Some of the most significant arise in the compilation of dependently-typed languages such as
Agda [Bove et al. 2009], Idris [Brady 2013], and Coq [Coq Development Team 2022], whose type
systems are sufficiently expressive to support arbitrary computation. It has proved difficult to
adapt long-studied translations such as continuation-passing style conversion, closure conversion,
and conversion into administrative normal form to the dependently-typed setting [Barthe et al.
1999; Barthe and Uustalu 2002; Bowman and Ahmed 2018; Bowman et al. 2018; Koronkevich et al.
2022].
Another such translation, defunctionalization, which eliminates higher-order functions from

programs, forms a key part of compilers for several higher-order languages [e.g. Braßel 2011;
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127:2 Yulong Huang and Jeremy Yallop

Pettyjohn et al. 2005; Podlovics et al. 2021; Weeks 2006]. Type-preserving variants of defunctional-
ization are available for a variety of type systems [Bell et al. 1997; Nielsen 2000; Pottier and Gauthier
2004]. Defunctionalization is also useful in the compilation of dependently-typed languages, such
as Idris 1. However, to date no type-preserving variant of the defunctionalization translation for
dependently-typed languages has been developed.
Thisworkmeets that need, introducing a typed defunctionalization translation for a dependently-

typed language, and establishing its fundamental properties. As with previous work that has
adapted similar program translations to support dependent types, we have encountered and re-
solved various difficulties that do not arise in simply-typed settings. In particular, the need to
preserve universe sizes (used by dependently-typed languages to avoid inconsistencies), and to
preserve reduction (used to establish type equality) make a straightforward adaption of the stan-
dard defunctionalization unfeasible.

1.1 Contributions

The central contribution of this paper is the first type-preserving defunctionalization translation
for a dependently typed language. In more detail,

• §2 shows that the type-preserving defunctionalization translations used for simply typed
languages (§2.1) do not extend to a dependently-typed setting (§2.3), and presents an abstract
translation suited to dependently-typed langauges (§2.4).

• §3 has the technical development of our type-preserving defunctionalization translation.
§3.3 formally defines the abstract translation and §3.4 and §3.5 establish keymeta-theoretical
properties such as soundness, type preservation, and consistency.

Finally, §4 describes an implementation of our translation (included as supplementary material),
and §5 summarises related work on type-preserving compilation and on defunctionalization.

2 OVERVIEW

2.1 Defunctionalization

The defunctionalization translation turns higher-order programs into first-order programs, by re-
placing the function arrow - → -with a first-order data type - { -. Defunctionalization replaces
each abstraction _G.48 in the source program with a constructor application�8 ~ where�8 is a con-
structor of - { - and ~ are the free variables of the abstraction, and replaces each application 5 G

with 5 $ G , where the infix operator $ maps �8 back to 48 .
Here is an example. The polymorphic compose function contains three abstractions, here labeled

F1, F2, and F3.

compose :: (b → c) → (a → b) → (a → c)

compose = _f → _g → _x → f (g x)

F1
F2

F3

Defunctionalizing compose produces a data type { with one constructor for each abstraction.
Here → separates constructor arguments: F2 has one argument of type b { c, corresponding to
f in F2 above, and F3 has two arguments, corresponding to f and g in F3.

data ({ ) a b where

F1 :: (b { c) { (a { b) { (a { c)

F2 :: (b { c) → (a { b) { (a { c)

F3 :: (b { c) → (a { b) → (a { c)

1https://github.com/idris-lang/Idris-dev/blob/v1.3.4/src/IRTS/Defunctionalise.hs
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Defunctionalization with Dependent Types 127:3

Following Pottier and Gauthier [2004], the data type { produced by defunctionalization is a gen-
eralized algebraic data type (GADT), in which the return type of each constructor can have a dis-
tinct instantiation of the type parameters, and constructor types can involve type variables (such
as b in the type of F3) that do not appear in return types.
Defunctionalization also produces an operator $ that maps the constructors of { to the bodies

of the corresponding abstractions:

($) :: (a { b) → a → b

F1 $ f = F2 f

F2 f $ g = F3 f g

F3 f g $ x = f $ (g $ x)

Here $ maps F1 and the argument G to F2 x, since the body of the abstraction F1 is F2, with x free.
Similarly, it maps F3 to f $ (g $ x) because the body of F3 is f (g x).
Finally, defunctionalization replaces → with { and F1 with F1 in compose itself:

compose_ :: (b { c) { (a { b) { (a { c)

compose_ = F1

Previous work on defunctionalization in typed settings has examined a variety of languages,
from simply-typed [Nielsen 2000] andmonomorphizable [Bell et al. 1997] to fully polymorphic [Pottier and Gauthier
2004]. In each case, defunctionalization represents functions using inductive data types, from sim-
ple algebraic datatypes for simply-typed functions, to themore powerful generalized algebraic data
types for polymorphism.
Might the same approach, extended to yet more powerful data types, support defunctionaliza-

tion of dependently-typed programs? Polymorphic functions abstract over types and defunction-
alize to GADTs indexed by types. By analogy, might dependent functions, which abstract over
expressions, defunctionalize to inductive families indexed by expressions?

2.2 Inductive families

We briefly recall inductive families and their associated restrictions. Inductive families [Dybjer
1994] generalize both ordinary inductive data types and generalized algebraic data types by per-
mitting indexing by expressions.
The constructor of each inductive family may return an instantiation of the family instantiated

with arbitrary indexes. For example, in the followingAgda [Norell 2008] definition the constructors
of the inductive family of finite sets, Fin, are indexed by natural numbers n:

data Fin : N→ Set0 where

fzero : {n : N} → Fin (suc n)

fsuc : {n : N}→ Fin n → Fin (suc n)

The constructor fzero constructs an element of type Fin (suc n) for any n, while fsuc constructs an
element of type Fin (suc n) from an element of type Fin n.
In general, inductive families (without parameters) have the following form:

data D : (y1 : T1) → . . . → (y= : T=) → Set3 where

c1 : A1

c1 : A2

. . .

where D is an inductive family in Set3 indexed by expressions of type T1, . . ., T=. For each con-
structor c8 , it takes a number of arguments (z8 : S8 ) and constructs an element of type D t1 . . . t= ,
where each t8 is an expression of type T8 . Concretely, each A8 takes the following form:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 127. Publication date: June 2023.



127:4 Yulong Huang and Jeremy Yallop

(z1 : S1) → . . . → (z< : S<) → D t1 . . . t=.

The arguments to D and c are dependently typed: T8+1 can mention y1 . . . y8 , and S8+1 can
mention z1 . . . z8 .
To ensure that inductive family definitions are consistent, Agda imposes additional restrictions.
First, universe checking rejects inductive definitions with impredicative constructors — that is,

definitions whose constructors inhabit a larger universe than the data types themselves. More
concretely, for a data type such as D above, the universe of every argument type S8 (i.e. the type
of S8 ) should be smaller than Set3 to pass the universe check. Without this restriction, inductive
families can be used to encode Girard’s paradox.
Second, positivity checking rejects inductive families that contain references to themselves in

non-strictly-positive positions. Without this restriction, inductive families such as the following
Fix can be used to build recursive definitions that violate consistency, such as bad:

data Fix : Set→ Set where

fix : ∀ {a} → (Fix a → a) → Fix a

bad : ∀ {a} → a

bad = f (fix f) where f : ∀ {a} → Fix a→ a

f (fix g) = g (fix g)

Strict positivity imposes two conditions on the constructor types A8 of an inductive family defini-
tion D. First, where D appears, it must not be indexed by expressions involving D itself. Second,
in the argument types S8 , D must not occur to the left of function arrows.
These requirements around strict positivity and universes are shared by many dependently-

typed languages that support inductive families, like Coq’s Gallina [Coq Development Team 2022],
Lean [de Moura et al. 2015], and Timany and Sozeau’s pCuIC [Timany and Sozeau 2017].

2.3 Problems extending defunctionalization to dependent types

At first glance, extending defunctionalization to support dependent functions, targeting inductive
families, appears straightforward. As an example, we consider the defunctionalization of the fol-
lowing fully-dependent compose function, written in Agda, with all arguments explicit for clarity:

compose : (A : Set)→ (B : A→ Set) → (C : (x : A) → B x → Set) →

(f : (y : A) → (z : B y)→ C y z)→ (g : (x : A) → B x) → (x : A) →

C x (g x)

compose = _ A→ _ B → _ C → _ f → _ g → _ x → f x (g x)

Adapting Pottier and Gauthier’s recipe, we start by defining an inductive family Π to represent
dependent functions, just as the GADT { represents non-dependent functions:

data Π : (A : Set) → (A→ Set) → Set where

Each dependent function type ΠG :�.5 G (written (x : A) → f x in Agda) in the original program
will be defunctionalized to Π A f.

Next, we add a constructor to Π for each lambda abstraction in the original program. For exam-
ple, the F6 constructor corresponds to the innermost abstraction, with free variables A, B, C, f and
g:

F6 : (A : Set) →

(B : Π A (_ _ → Set)) →

(C : Π A (_ x → Π (B $ x) (_ _→ Set)))→

(f : Π A (_ y → Π (B $ y) (_ z → C $ y $ z)))→

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 127. Publication date: June 2023.



Defunctionalization with Dependent Types 127:5

(g : Π A (_ x → B $ x)) →

Π A (_ x →

C $ x $ (g $ x))

Finally, we add a case for each constructor to the definition of $:

F6 A B C f g $ x = f $ x $ (g $ x)

Appendix A gives the full definitions. Unfortunately, although these definitions are type-correct,
they do not satisfy Agda’s additional checks.
First, universe checking rejects the definition of F6 because in the type of B the second argument

of Π (i.e. __ → Set) inhabits the universe Set1, which is larger than Set.
Second, positivity checking rejects the definition of F6 because in the type of C, Π is indexed by

an expression involving Π.
Finally, Agda’s termination checking rejects the definition of $ because the case for F6 is not

structurally terminating.

2.3.1 A simpler example. The example above suggests that although defunctionalization appar-
ently extends naturally to dependent types, the extension suffers from consistency problems. In
fact, the situation is more grave: even if we do not make use of dependency, the same problems
with universes and positivity arise.

For example, here is a simply-typed compose function, based on fixed types A, B, and C:

compose : (B → C) → (A→ B) → (A→ C)

compose = _ f → _ g → _ x → f (g x)

Defunctionalizing compose produces an inductive family{ and corresponding apply function $:

data _{_ : Set → Set → Set where

F1 : (B{ C){ (A{ B){ (A{ C)

F2 : (B{ C) → (A{ B){ (A{ C)

F3 : (B{ C) → (A{ B) → (A{ C)

_$_ : ∀ {A B} → (A{ B) → A→ B

F1 $ f = F2 f

F2 f $ g = F3 f g

F3 f g $ x = f $ (g $ x)

Unfortunately, the simple definition{ suffers from the same problems as the more dependent Π.
First, universe checking rejects the constructor F1, because the type B{ C inhabits the universe
Set1, which is larger than Set. Second, in the type of F1,{ is indexed by{ itself, so the definition
fails positivity checking. Finally, the F3 case of $ fails termination checking because the arguments
to the recursive call are not structurally smaller than the parameters.

2.3.2 An expressivity mismatch. We might note that the Agda’s restrictions are only fairly crude
syntactic approximations of semantic properties, that programs that breach them are not necessar-
ily “incorrect”. A similar approach has been taken by Ahrens et al. [2018] (for universe checking),
and by Weirich and Casinghino [2010] (for all three checks), among others.
However, we do not favour taking off the safety guards in this way for the code generated by

defunctionalization. In our view, the fact that Agda rejects the inductive families generated by
defunctionalization suggests that inductive families are ill suited to the task. For example, the uni-
verse restriction that rejects the constructors ofΠ does not apply to the closures that correspond to

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 127. Publication date: June 2023.
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D ::= L3 ({f : B → C, g : A → B}, x : A ↦→ f@ (g@ x) : C),
L2 ({f : B → C}, g : (A → B) ↦→ L3{f, g} : A → C),

L1 ({}, f : (B → C) ↦→ L2{f} :→ (A → B) → A → C)

compose ::= L1{}

Fig. 1. Defunctionalized simply-typed composition

those constructors in the source program: there is nothing requiring a free variable in an abstrac-
tion body to inhabit a smaller universe than the function itself. The additional restriction arises
from an expressivity mismatch: the universe restriction is only needed when inductive families
are not used in a closure-like fashion — e.g. when constructor arguments are extracted.

2.4 Abstract defunctionalization

The examples above suggest that the extension of defunctionalization to dependent types is type-
preserving. It is also possible to show that it is meaning-preserving. As Pottier and Gauthier [2006]
observe, when defunctionalization produces a single polymorphic apply function, it coincides with
the untyped defunctionalization translation. Pottier and Gauthier use this coincidence to prove
that the typed translation is meaning-preserving by lifting a proof about the untyped translation.
We might similarly lift the proof to the dependently-typed setting to establish the correctness of
the extended translation.
Since the extended defunctionalization translation appears to preserve types and meanings, it

is disappointing that it falls foul of Agda’s various restrictions. How might we build a translation
that does not violate these checks?
We choose to follow the direction taken by Minamide et al. [1996] and Bowman and Ahmed

[2018] for abstract closure conversion, which studies closure conversion for a specialized target
language with new constructs for representing closures and closure types. Closure conversion
into these constructs captures the essence of the translation, while avoiding the unnecessary re-
strictions imposed by more concrete settings. Similarly, we will define a target language, the De-
functionalized Calculus of Constructions (DCC), in the style of lambda calculus, but with a new
construct for defunctionalized labels (representing indexes into a label context) in place of lambda
abstractions.
Fig. 1 shows the result of defunctionalizing the simply-typed compose function to DCC 2, which

looks and behaves like the conventional defunctionalization presented in §2.1. In our translation
into DCC, each abstraction _G.48 is replaced with a label expression Li{y} where Li is the label’s
identifier and y are the abstraction’s free variables. The function body 48 is stored in a separate
label context D indexed by the label identifier, along with its typing information.
In Fig. 1, the label contextD has three entries, one for each abstraction in the original compose

function. Each entry corresponds to one case of the $ function in the conventional defunctional-
ization. For example, L3 arises from the translation of _G : �. 5 (6 G), and corresponds to the F3

case in the definition of $: it has two free variables f : B → C and g : A → B, a bound variable
x, and a body f@ (g@ x). As we shall see, a label application L3{f, g}@N reduces to f@ (g@N),
just as the application (F3 f g) $ x reduces to the corresponding right hand side f $ (g $ x).
It is straightforward to add dependent types to this scheme, but some care is needed to define

the transformation and show that it has the desired meta-theoretical properties. In particular, as
we shall see, the transformation needs to consider the entire derivation tree rather than just the
source language expression (§3.3.2), and we need to use a version of the source language with

2We assume that �, �, and� are base types here.
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explicit substitutions (§3.4) to make the type-preservation proof go through. These challenges
arise only in defunctionalization in a dependently typed setting, which has not been previously
studied.

3 DEFUNCTIONALIZING WITH DEPENDENT TYPES

Having informally introduced the key concepts and motivated our abstract defunctionalization
translation, we now turn to the technical details. The next few sections introduce our source lan-
guage, the calculus of constructions (§3.1), our target language, the defunctionalized calculus of
constructions (§3.2), and the defunctionalizion translation that links them (§3.3). We then estab-
lish the soundness of the translation (§3.4) and prove the consistency of the target language (§3.5).

3.1 Calculus of Constructions

Our source language is a variant of the Calculus of Constructions (CC) [Coquand and Huet 1988],
an expressive dependently-typed lambda calculus that serves as a basis for several programming
languages and proof assistants. Our main departure from the original presentation of CC is in
following the approach taken by Luo [1990], and by many dependently-typed languages such as
Agda, Lean, Coq, and F*, by extending CC with a Martin-Löf style hierarchy of universes.

Here is an example CC definition, compose, which represents the fully dependent composition

function for functions 5 and 6:

compose ::= _� :*0. _� : (ΠG :�.*0). _� : (ΠG :�.Π~ :� G.*0).

_5 : (Π~ :�.(ΠI :� ~.� ~ I)). _6 : (ΠG :�.� G).

_G :�. 5 G (6 G)

The expression component _�._�._�._5 ._6._G .5 G (6 G) of this definition is unremarkable; all

the interest is in the dependencies of types on arguments. In particular, the result type � ~ I of

5 depends on 5 ’s arguments ~ and I and the result type � G of 6 depends on 6’s argument G . (In

a practical programming language, both ~ and the type arguments �, � and � would be passed

implicitly, but our minimal calculus does not support implicit arguments.)

Fig. 2a shows the syntax of CC. The expressions of CC are variables x (drawn from an infinite

set of names), universes * , dependent function types Πx:A.B, applications L M , and abstractions

_x:A.M . A CC context Γ is a telescope of variable-expression pairs.

CC has four judgements:

(1) reduction (Fig. 2b)

" ⊲ #

(2) type membership (Fig. 2c)

Γ ⊢ M : A

(3) context formation (Fig. 2d)

⊢ Γ

(4) equivalence (Fig. 2e)

⊢ A ≡ B

There is a single reduction rule (Fig. 2b), for V-reduction, (_x:A.N ) M ⊲ N [M/x]. We write

L ⊲∗ M to mean that L reduces to M in a sequence with zero or more steps.

CC’s rules for typing (Fig. 2c) and context formation (Fig. 2d) are defined by mutual induction.

The type of a variable G is � if G : � is present in the well-formed context Γ (ty-Var). The

type of a universe *8 is *8+1 (ty-Universe), and the type of Πx:A.B is the higher universe among
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Expressions �, �, !,", # ::= G | * | Πx:A.B | L M | _x:A.M
Universes * ::= *8

Contexts Γ ::= · | Γ, x : A

(a) Syntax

" ⊲ # (Reduction)

(_x:A.N ) M ⊲ N [M/x]
red-Beta

(b) Reduction

Γ ⊢ M : A (Typing)

x : A ∈ Γ ⊢ Γ

Γ ⊢ x : A
ty-Var

⊢ Γ

Γ ⊢ *8 : *8+1
ty-Universe

Γ ⊢ A : *8 Γ, x : A ⊢ B : * 9

Γ ⊢ Πx:A.B : *<0G (8, 9)

ty-Pi
Γ ⊢ M : Πx:A.B Γ ⊢ N : A

Γ ⊢ M N : B[N/x]
ty-Apply

Γ, x : A ⊢ M : B

Γ ⊢ _x:A.M : Πx:A.B
ty-Lambda

Γ ⊢ M : A Γ ⊢ B : U ⊢ A ≡ B

Γ ⊢ M : B
ty-Eqiv

(c) Typing

⊢ Γ (Well-formedness)

⊢ ·
wf-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
wf-Cons

(d) Context formation

⊢ M ≡ N (Equivalence)

L ⊲∗ N

M ⊲
∗ N

⊢ L ≡ M
eq-Reduce

L ⊲∗ _x:A.L′

M ⊲
∗ M ′

⊢ L′ ≡ M ′ x

⊢ L ≡ M
eq-Eta1

L ⊲∗ L′

M ⊲
∗ _x:A.M ′

⊢ L′ x ≡ M ′

⊢ L ≡ M
eq-Eta2

(e) Equivalence

Fig. 2. The Calculus of Constructions (CC)

universes of � and � (ty-Pi). If " has type � in some context Γ extended with G :�, then _x:A.M
has the dependent function type Πx:A.B (ty-Lambda). Applications have types � [# /G], since the

output of a function type may depend on the argument # (ty-Apply). Finally, if an expression "

has type � and � is equivalent to �, then" also has type � (ty-Eqiv).

A context Γ is well-formed (written ⊢ Γ) if every variable in it is associated with a valid type —

that is, the associated expression’s type is a universe in the context Γ.

We make use of two shorthands, writing Γ ⊢ A : U to mean that Γ ⊢ A : Ui for some 8 (which

means that � is a type), and A → B to stand for the Π-type Πx:A.B where � does not depend on
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G . For simplicity, we omit base types such as the unit type 1 and the natural numbers N from the

formal definition, but we will use them freely in examples.

In CC, two expressions are equivalent (Fig. 2e) if they reduce to the same expression (eq-Reduce)

or are [-equivalent as defined by two symmetric rules eq-Eta1 and eq-Eta2. Under eq-Eta1, !

and" are equivalent if ! reduces to an abstraction _x:A.L′," reduces to some" ′, and L′ ≡ M ′ x,

and eq-Eta2 corresponds symmetrically [Bowman and Ahmed 2018; Bowman et al. 2018].

One useful property of CC is as follows: if Γ ⊢ M : A, then Γ ⊢ A : U . Furthemore, CC is type

safe and consistent, and type-checking in CC is decidable [Coquand and Huet 1988; Luo 1990].

3.2 Defunctionalized Calculus of Constructions

Fig. 3a shows the syntax of our target language, the Defunctionalized Calculus of Constructions

(DCC). As in CC, DCC expressions include variables x, universes U, dependent function types

Πx:A.B, and applications L@M. Unlike CC, DCC contains first-class function labelsL{M} instead

of lambda abstractions.

A label expression L{M} is a label name L supplied with a list of zero or more expressions M

(standing for M1, · · · ,Mn) assigned to its free variables. Label names L1,L2, · · · are disjoint from

variable names, as we emphasize using a different font.

There are two varieties of context in DCC. As in CC, type contexts Γ associate variables x with

types A. Label definition contextsD pair label names with their associated data:L({x : A} , x :A ↦→

M : B). Here x : A records the type of the (possibly empty) telescope of free variables that the label

takes, (x : A) → B specifies the label type, and M is the expression to which the label reduces

when applied to an argument. Note that types in a type context Γ may refer to labels L1,L2, · · · in

the label contextD, but not vice versa.

DCC has four judgements:

(1) reduction (Fig. 3b)

D ⊢ M ⊲ N

(2) type membership (Fig. 3c)

D; Γ ⊢ M : A

(3) context formation (Fig. 3d)

⊢ D; Γ

(4) equivalence (Fig. 3e)

D ⊢ A ≡ B

3.2.1 Reduction. There is a single reduction rule (Fig. 3b), for label application: the application of

the label L{M} to the argument N reduces to L[M/x,N/x], where L is the body of the entry for L

in the label context andM is the closure ofL. A reduction sequence is noted asD ⊢ M ⊲
∗N, which

meansM reduces to N in zero or more steps.

Substitutions for variables, universes, Π-types and applications in DCC follow the conventional

definition. Substitutions for labels are

L{M}[N/x] , L{M[N/x]},

where M[N/x] is syntactic sugar for M1[N/x], · · · ,Mn[N/x].

3.2.2 Type judgements. DCC’s type judgements are of the formD; Γ ⊢ M : A, and typing rules are
given in Fig. 3c. Rules for variables, universes, Π-types, applications, and conversion are identical
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127:10 Yulong Huang and Jeremy Yallop

Universes U ::= Ui

Expressions A,B, L,M,N ::= x | U | Πx:A.B | L@M | L{M}

Type contexts Γ ::= · | Γ, x :A

Label contexts D ::= · | D,L({x : A} , x :A ↦→ M : B)
DCC contexts D ; Γ

(a) Syntax

D ⊢ M ⊲ N (Reduction)

L({x : A} , x :A ↦→ L : B) ∈ D

D ⊢ L{M}@N ⊲ L[M/x,N/x]
d-red-Beta

(b) Reduction

D; Γ ⊢ M : A (Typing)

x : A ∈ Γ

⊢ D; Γ

D; Γ ⊢ x : A
d-ty-Var

⊢ D; Γ

D; Γ ⊢ Ui : Ui+1
d-ty-Universe

D; Γ ⊢ A : Ui

D; Γ, x : A ⊢ B : Uj

D; Γ ⊢ Πx:A.B : Umax(i,j)
d-ty-Pi

D; Γ ⊢ M : Πx:A.B
D; Γ ⊢ N : A

D; Γ ⊢ M@N : B[N/x]
d-ty-Apply

D; Γ ⊢ M : A

L({x : A} , x :A ↦→ M : B) ∈ D

D; Γ ⊢ L{M} : Πx:A[M/x] .B[M/x]
d-ty-Label

D; Γ ⊢ M : A
D; Γ ⊢ B : Ui

D ⊢ A ≡ B

D; Γ ⊢ M : B
d-ty-Eqiv

(c) Typing

⊢ D; Γ (Well-formedness)

⊢ ·; ·
d-wf-Empty

D; x : A, x : A ⊢ M : B

⊢ D,L({x : A} , x :A ↦→ M : B); ·
d-wf-Label

D; Γ ⊢ A : Ui

⊢D; Γ, x : A
d-wf-Type

(d) Context and label context formation

D ⊢ M ≡ N (Equivalence)

D ⊢ L ⊲∗ N

D ⊢ M ⊲
∗ N

D ⊢ L ≡ M
d-eq-Reduce

D ⊢ L ⊲∗ L{N}

D ⊢ M ⊲
∗ M′

L({x : A} , x :A ↦→ N : B) ∈ D

D ⊢ N[N/x] ≡ M′@ x

D ⊢ L ≡ M
d-eq-Eta1

D ⊢ L ⊲∗ L′

D ⊢ M ⊲
∗ L{N}

L({x : A} , x :A ↦→ N : B) ∈ D

D ⊢ L′@ x ≡ N[N/x]

D ⊢ L ≡ M
d-eq-Eta2

(e) Equivalence

Fig. 3. The Defunctionalized Calculus of Constructions (DCC)
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to their counterpart rules in CC, so we focus on the rule for labels. A label termL{M} is well-typed

inD ; Γ if the following conditions are satisfied.

(1) The contextD ; Γ is well-formed.

(2) L({x : A} , x :A ↦→ M : B) is present inD.

(3) The length of the two lists M and x :A are equal.

(4) All expressions in M are well-typed, and their types match the specified types of free vari-

ables A.

Specifically, condition (4) means:

D; Γ ⊢ M1 : A1,

D; Γ ⊢ M2 : A2 [M1/x1],

· · · ,

D ; Γ ⊢ Mn :An [M1/x1, · · · ,Mn−1/Mn−1] .

Each Ai+1 depends on x1, · · · , xi, soM1, · · · ,Mi need to be substituted in Ai+1 in the type judgement

forMi+1. The type of L{M} is Πx:A[M/x] .B[M/x].

Note that values of free variablesM are substituted inΠx:A.B, the specified type of the label. We

use [M/x] as a syntactic sugar of [M1/x1, · · · , Mn/xn], and conditions (3) and (4) are abbreviated

toD; Γ ⊢ M : A as a convention.

The DCC judgement for well-formed contexts is ⊢ D; Γ and its rules are given in Fig. 3d. A

context is well-formed if every variable in the type context is associated with a valid type (in the

previous contextD ; Γ), and every label is associated with a well-typed data. In other words, if we

have L({x : A} , x :A ↦→ M : B), M should have the type B as specified in the context formed by

the previous label context and the free variables in M (namelyD; x : A, x : A).
Two terms L and M are equivalent (Fig. 3e) if they both reduce to the same term N in a reduc-

tion sequence or they are [-equivalent. DCC’s [-equivalence rules are similar to that of CC. Rule

(d-eq-Eta1) defines that L and M are equivalent if L reduces to a label L{N}, M reduces to M′,

L({x : A} , x : A ↦→ N : B) is found in the label context D, and M′@ x is equivalent to N[N/x].

Rules (d-eq-Eta1) and (d-eq-Eta2) are symmetrical.

Both the type context and the label context have the weakening property: a well-typed expres-

sion is still well-typed in an extended type or label context (by induction on the type derivation

rules).

Lemma 3.1 (Typeweakening). IfD; Γ ⊢ M : A,D; Γ ⊢ B : Ui, and x is fresh, thenD; Γ, x : B ⊢ M : A.

Lemma 3.2 (Label weakening). If D; Γ ⊢ M : C, D; x : A, x : A ⊢ N : B, and Li is fresh, then

D,Li({x : A} , x :A ↦→ N : B); Γ ⊢ M : C.

DCC is type-safe and consistent (we establish these properties in §3.5). In addition, it is suffi-

ciently expressive to support the compose function, but we must write it in defunctionalized style,

since the calculus does not support lambda abstraction. There is one entry in the label contextD

for each _ in the CC definition of compose:

D ::= L5 ({A,B,C, f, g} , x : A ↦→ (f@ x)@ g@ x : (C@ x)@ g@ x),

· · · ,

L1 ({A : U0} ,B : (Πx:A.U0) ↦→ L2{A,B} : ΠC.Πf .Πg.Πx.(C@ x)@ g@ x),

L0 ({} ,A : U0 ↦→ L1{A} : ΠB.ΠC.Πf .Πg.Πx.(C@ x)@ g@ x)

and the definition of compose itself is simply a projection of a closed label from the context:

compose ::= L0{}
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The full definition appears in Appendix B.

3.3 The Defunctionalization Translation

Γ ⊢ M : A { M (Expression transformation)

Γ ⊢ x : A { x
t-Var

Γ ⊢ *8 : *8+1 { Ui
t-Universe

Γ ⊢ A : *8 { A

Γ, x : A ⊢ B : * 9 { B

Γ ⊢ Πx:A.B : *<0G (8, 9) { Πx:A.B
t-Pi

Γ ⊢ L : Πx:A.B { L

Γ ⊢ M : A{ M

Γ ⊢ L M : B[M/x] { L@M
t-Apply

�+ (_8G :A.M) = x:A

Γ ⊢ x : A{ x

Γ ⊢ _8G :A.M : Πx:A.B { Li{x}
t-Lambda

Γ ⊢ M : A{ M

Γ ⊢ B : U
⊢ A ≡ B

Γ ⊢ M : B { M
t-Eqiv

(a) Defunctionalization of expressions

Γ ⊢ M : A {3 D (Function extraction)

Γ ⊢ A : U {3 D

Γ ⊢ x : A{3 D
d-Var

Γ ⊢ *8 : *8+1 {3 ·
d-Universe

Γ ⊢ A : *8 {3 DA

Γ, x : A ⊢ B : * 9 {3 DB

Γ ⊢ Πx:A.B : *<0G (8, 9) {3 DA ∪DB
d-Pi

Γ ⊢ A : U {3 DA Γ, x : A ⊢ M : B {3 DM

�+ (_8G :A.M) = x:A Γ ⊢ A : U { A

Γ, x : A ⊢ M : B { M Γ ⊢ Πx:A.B : U { Πx:A.B

Γ ⊢ _8G :A.M : Πx:A.B {3 DA ∪DM ,Li({x : A} , x :A ↦→ M : B)
d-Lambda

Γ ⊢ M : Πx:A.B {3 D1

Γ ⊢ N : A {3 D2

Γ ⊢ B[N/x] : U {3 D3

Γ ⊢ M N : B[N/x] {3 D1 ∪D2 ∪D3
d-Apply

Γ ⊢ M : A{3 D

Γ ⊢ B : U {3 DB

⊢ A ≡ B

Γ ⊢ M : B {3 D ∪DB
d-Eqiv

(b) Extraction of function definitions

Fig. 4. The Defunctionalization Translation

Fig. 4 shows the translation. It consists of two parts: a transformation [[−]] for expressions and

a meta-function [[−]]3 that extracts function definitions from the source program. The expression

transformation produces the target program and the meta-function [[−]]3 gives a label context.

3.3.1 Expression transformation.
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Definition 3.3. The expression transformation [[−]] takes a well-typed term in CC and an implicit

argument of that term’s type derivation. We define [["]] , M, whereM is given by a new judgement

of the form Γ ⊢ M : A { M (Fig. 4a).

The transformation simply transcribes the variables, universes, Π-types, applications, and base

types and values in CC to their counterparts in DCC compositionally. Functions in the source

language are translated into labels in the target language.

Defunctionalization requires a unique correspondence between each label and each source-

program function. We use a convention that every lambda in the transformation’s input " is

tagged with a unique identifier 8 (8 ∈ N), and its corresponding label’s name is Li.

The transformation turns a function _8G :A.M into a label Li{x}, where x come from the func-

tion’s free variables G (t-Lambda). The meta-function FV (see Definition 3.4) computes all free

variables and their types involved in a well-typed CC-expression. Note that FV is different from fv,

the conventional free variable function that computes all the unbound variables in an expression.

In dependently typed languages, the type of a free variable may contain other free variables, and

their types may still contain other free variables, and so on! Therefore, FV(") must recursively

work out all the variables needed for" to be well-typed.

Definition 3.4. FV(") takes Γ ⊢ M : A, the type judgement of " , as an implicit argument. It

firstly computes all the unbound variables G1, · · · , G= in " and in �, then calls itself recursively on

types of these variables, and finally returns the union of all free variables and their types it found.

FV(") = FV(�1) ∪ · · · ∪ FV(�=) ∪ Γ5 E

where fv (") ∪ fv (�) = G1, · · · , G=
Γ ⊢ G1 :�1, · · · , Γ ⊢ G= :�=

Γ5 E , G1 :�1, · · · , G= :�= .

Here, the union of two type contexts Γ1∪Γ2 is Γ1 appended with all the variable-expression pairs

G :� that only appear in Γ2, preserving their order. Intuitively, �+ (M) computes all the variables

needed to correctly type" . Therefore," is still well-typed in its free-variable context �+ (M).

Lemma 3.5. If Γ ⊢ M : A, then �+ (M) ⊢ M : A.

3.3.2 Extracting function definitions.

Definition 3.6. [[−]]3 takes a well-typed CC term and implicitly its type derivation. We define

[["]]3 , D, whereD is given by a new judgement of the form Γ ⊢ M : A {3 D (Fig. 4b).

In a simply typed system, the only thing [[−]]3 has to do is finding every function _8G :A.M in

the source program and placing them in the label contextD in the following form

L({x : A} , x :A ↦→ M : B)

where {x :A}, x : A,M, and B respectively correspond to the free variables (G : �) in the function,

the bound variable G : �, the function body" , and the return type �.

Alas, types may index over functions in our dependent type theory, and functions may appear in

the type of an expression, even if the expression itself does not contain that function! For example,

consider the following triple (Γ,", # ) in CC (with built-in natural numbers and addition).

Γ , ·, � : (#0C → #0C) → *0, 0 : Π5 : (#0C → #0C).� (_= :#0C .1 + (5 =))

" , 0 (_G :#0C .1 + G)

# , � (_= :#0C .2 + =)
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� is a family of types indexed by #0C → #0C functions and 0 5 constructs an element of type

� (_= :#0C .1 + (5 =)). According to the rule (ty-Apply), the inferred type of " is

(� (_= :#0C .1 + (5 =)))[(_G :#0C .1 + G)/5 ]

= � (_= :#0C .(1 + (_G :#0C .1 + G) =)),

which reduces to� (_= :#0C .2+=). We have Γ ⊢ M : N , yet # contains a function that is not in Γ or

"! We should include this new function inD, as it guarantees that we will never be in a situation

where we need a non-existent label in [["]]3 to type [["]]. In other words, the transformation

defunctionalizes not just the source-language expression, but its entire type derivation tree.

Hence, we arrive at the rules in Fig. 4b. Type derivations of universes do not involve functions at

all (d-Universe). Function definitions in a variable G are just the definitions in its type � (d-Var).

Definitions in a dependent function type ΠG :�.� are the union of definitions in � and � (d-Pi).

The union here is defined in the same way as the union of contexts (see Definition 3.4), and there

is no ambiguity since different functions correspond to different label names.

Definitions in an application M N are the union of definitions in " , # , and �[# /G], since

the substitution �[# /G] may create new function definitions (d-Apply). For a lambda abstraction

_8G :A.M , the definitions it contains are the union of definitions in " and in � appended with Li,

the definition of itself (d-Lambda). If " has type � by the conversion rule, then the definitions

involved in the derivation of Γ ⊢ M : B are the union of definitions in the derivation of Γ ⊢ M : A
and definitions in � (d-Eqiv).

We define the subset relation of label contexts to help state further definitions and theorems.

Definition 3.7. For two well-formed label contexts D1 andD2,D1 ⊆ D2 if for all Li({x : A} , x :

A ↦→ N : B) inD1, Li({x : A} , x :A ↦→ N : B) is also inD2.

The notion of subsets gives a stronger weakening property to DCC: a well-typed expression is

still well-typed in a larger label context.

Lemma 3.8 (Label context weakening (subsets)). IfD1; Γ ⊢ M : A, ⊢ D2, andD1 ⊆ D2, then

D2; Γ ⊢ M : A.

Since the transformation defunctionalizes the entire type derivation tree of an expression, if

Γ ⊢ M : A, then all elements in [[A]]3 are also in [[M]]3 . We can prove this property by induction

on the type derivation rules.

Lemma 3.9. For any well-typed expression Γ ⊢ M : A in CC, [[A]]3 ⊆ [[M]]3 .

The expression transformation and the process of extracting function definitions ([[−]] and

[[−]]3 ) act pointwise on CC contexts. In other words,

[[·]] , ·, [[Γ, G :�]] , [[Γ]], x : [[�]],
[[·]]3 , ·, [[Γ, G :�]]3 , [[Γ]]3 ∪ [[�]]3 .

Now, we can see that the (tagged) composition function _0�._1�._2�._3 5 ._46._5G.5 G (6 G)

transforms to L0{}, a label with no free variables supplied, since the function is closed. The label

contextD for composition can be derived from the function extraction judgements with the sketch

derivation tree shown below.
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�, �,�, 5 , 6 ⊢ _5G.5 G (6 G) {3 L5 ({A,B,C, f, g}, x : _ ↦→ (f@ x)@ g@ x : _)
d-Lambda

�, �,�, 5 ⊢ _46._5G.5 G (6 G) {3 · · · ,L4({A,B,C, f}, g : _ ↦→ L5{A,B,C, f, g} : _)
d-Lambda

�, �,� ⊢ _35 ._46._5G.5 G (6 G) {3 · · · ,L3({A,B,C}, f : _ ↦→ L4{A,B,C, f} : _)
d-Lambda

�, � ⊢ _2�._3 5 ._46._5G.5 G (6 G) {3 · · · ,L2({A,B},C : _ ↦→ L3{A,B,C} : _)
d-Lambda

� ⊢ _1�._2�._3 5 ._46._5G.5 G (6 G) {3 · · · ,L1 ({A},B : _ ↦→ L2{A,B} : _)
d-Lambda

· ⊢ _0�._1�._2�._3 5 ._46._5G.5 G (6 G) {3 · · · ,L0({}, A : _ ↦→ L1{A} : _)

3.4 Soundness

�G?A4BB8>=B ::= · · · | "{G ↦→ # }

Γ ⊢ " : � (Typing)

Γ ⊢ " : ΠG :�. � Γ ⊢ # : �

Γ ⊢ " # : �{G ↦→ # }
s-ty-Apply

Γ, G : � ⊢ " : � Γ ⊢ # : �

Γ ⊢ "{G ↦→ # } : �{G ↦→ # }
s-ty-Subst

" ⊲ # (Reduction)

G{~ ↦→ # } ⊲ G
s-red-Var1

G{G ↦→ # } ⊲ #
s-red-Var2

* 8{G ↦→ # } ⊲ * 8
s-red-Universe

(_G :�.") # ⊲ "{G ↦→ # }
s-red-Beta

(! "){G ↦→ # } ⊲ (!{G ↦→ # }) ("{G ↦→ # })
s-red-Apply

((_G :�."){G ↦→ "}) # ⊲ ("{G ↦→ "}){G ↦→ # }
s-red-Closure

⊢ " ≡ # (Equivalence)

! ⊲
∗ (_G :�.# ){~ ↦→ # } " ⊲

∗ " ′

⊢ # {~ ↦→ # } ≡ " ′ G

⊢ ! ≡ "
s-eq-Closure1

" ⊲
∗ (_G :�.# ){~ ↦→ # } ! ⊲

∗ !′

⊢ !′ G ≡ # {~ ↦→ # }

⊢ ! ≡ "
s-eq-Closure2

Fig. 5. New syntax and rules in CC(

We consider dependently typed defunctionalization correct if for all base types �, values E , and

programs" of type �,

· ⊢ M : A ∧ " ⊲
∗ E =⇒ DΓ ∪DM ⊢ M ⊲

∗ v′ where v′ ≡ v.

In other words, if a closed program " evaluates to a base-type value E , then M evaluates to a

base-type value v′ that is equivalent to v. This property follows as a corollary of the preservation

of reduction sequences, which states that

" ⊲
∗ # =⇒DΓ ∪DM ∪DN ⊢ M ⊲

∗ M′,

whereDΓ ∪DM ∪DN ⊢ M′ ≡ N.

Ideally, we could show this property by showing that the transformation preserves all small-step

reductions" ⊲ # , followed by an induction on the number of reduction steps in a sequence. How-

ever, CC’s meta-language substitution (_G :�.")[# /~] creates a new function definition when it

substitutes an expression into a free variable of a function. So, for a reduction sequence"1 ⊲· · · ⊲"=

in CC, some"8 may contain function definitions that do not exist in"1 or"= . Consequently, not
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all "8 translate into well-typed DCC expressions Mi in (DΓ ∪ DM1 ∪ DMn ) ; Γ, which makes the

standard approach infeasible. Moreover, preservation of reduction sequences is a key lemma for

showing type preservation, since CC’s typing rules involve equivalence and the equivalence rule

(eq-Reduce) is defined with reductions.

Fortunately, meta-theoretic substitution is the only means of creating new function definitions

in CC’s reduction sequences. There would be no problem if the source language did not evaluate

substitutions into functions but kept them as primitive expressions. To apply this observation we

define a helper language CC( , which is an extension of CC with explicit substitutions [Abadi et al.

1991]. In addition, CC( does not reduce substitutions of expressions into functions.

Since CC( extends CC, every CC expression is trivially a CC( expression. We denote this trivial

transformation from CC to CC( as f . Then, we define the defunctionalization transformation from

CC( to DCC in a similar way as that from CC to DCC – an expression transformation [[−]] and

a meta-function [[−]]3 for extracting definitions. Next, we show that f and defunctionalization

for CC( preserve reduction sequences and they commute with the transformation from CC into

DCC. As a corollary, defunctionalization from CC to DCC preserves reduction sequences. In other

words, we show that the following diagram commutes for all CC-expressions " and # (contexts

omitted).

" #

" " ′ #

M M′ N

f

[[−]]

⊲
∗

f

[[−]]
⊲
∗

[[−]]

≡

[[−]] [[−]]

⊲
∗ ≡

CC( is an extension of CC with new syntax, type derivation rules, reduction rules, and equiv-

alence rules (Fig. 5). We write CC( expressions in a C40;,<0Cℎ4<0C820; 5 >=C to avoid ambiguity.

CC( extends the CC syntax with syntactic substitutions of the form"{G ↦→ # }.

Type rules for variables, universes, Π-types, functions, and equivalence in CC( are the same

as the standard rules in CC, except that the type of an application " # is �{G ↦→ # } with the

syntactic substitution. The type of a substitution "{G ↦→ # } is the type of " with G substituted

by # (s-ty-Subst).

CC( has five reduction rules for substitutions, which are the standard meta-theoretic substitu-

tion rules for variables, universes, Π-types, and applications being internalised into the language.

Note that the meta-theoretic substitution in the CC’s original beta-reduction rule (_G :�.") # ⊲

"{G ↦→ # } is also replaced by the syntactic one. CC( does not reduce substitutions into func-

tions, but it V-reduces them when they are applied to arguments (s-red-Closure). We write

"{G1 ↦→ #1, G2 ↦→ #2} for a substitution followed by another substitution ("{G1 ↦→ #1}){G2 ↦→ #2},

and"{~ ↦→ # } for a sequence of substitutions ((("{~1 ↦→ #1}){G2 ↦→ #2}) · · · ){~= ↦→ #=}.

Like in CC, two terms in CC( are equivalent if they V-reduce to the same expression or are

[-equivalent. In addition, CC( has two symmetric rules (s-eq-Closure1) and (s-eq-Closure2) for

determining when a sequence of substitutions into a function (_G :�."){~ ↦→ # } is equivalent

to another expression. This is essentially a variant of the [-equivalence rules that is compatible

with substitutions – (_G :�."){~ ↦→ # } is equivalent to # if applying # to G is equivalent to the

function body" with ~ being substituted for # .

Now, we define the defunctionalization transformation from CC( to DCC, which is the transfor-

mation from CC to DCC extended with the following two rules. We use [[−]] and [[−]]3 to stand
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for the expression transformation and the metafunction for extracting function definitions, and

we apply the convention of tagging lambdas with unique identifiers 8 (8 ∈ N) as usual.

Γ ⊢ " : �{M (Expression transformation)

Γ, G : � ⊢ " : �{M Γ ⊢ # : �{N

Γ ⊢ "{G ↦→ # } : �{G ↦→ # }{M[N/x]
s-t-Subst

Γ ⊢ " : �{3D (Function extraction)

Γ, G : � ⊢ " : �{3D1 Γ ⊢ # : �{3D2

Γ ⊢ "{G ↦→ # } : �{G ↦→ # }{3D1 ∪D2
s-d-Subst

The transformation turns a syntactic substitution in CC( into a meta-theoretic substitution in

DCC (s-t-Subst); the function definitions in a substitution "{G ↦→ # } are the union of the def-

initions in " and # (s-d-Subst). Since substitutions into functions do not reduce in CC( , the

transformation from it into DCC have the following strong properties by definition, which are not

true for the transformation from CC into DCC.

" ⊲
∗ # =⇒ [[# ]]3 ⊆ [["]]3 (1)

[["{G ↦→ # }]] = [["]][[[# ]]/x]. (2)

Next, we show that the transformation preserves small step reductions in CC( – if a CC( pro-

gram" reduces to # in one step, then the translated programM evaluates to N in a sequence.

Lemma 3.10 (Preservation of small step reductions). If Γ ⊢ " : � and" ⊲ # , then [[Γ]]3 ∪

[["]]3 ⊢ M ⊲
∗ N.

The transformation preserves sequences of reductions, and the proof follows from a trivial in-

duction on the number of small steps in the sequence.

Lemma 3.11 (Preservation of reduction seqences (CC( )). If Γ ⊢ " : � and " ⊲
∗ # , then

[[Γ]]3 ∪ [["]]3 ⊢ M ⊲
∗ N.

The transformation is also coherent, i.e. it preserves the equivalence relation in CC( .

Lemma 3.12 (Coherence (CC( )). If Γ ⊢ " : �, Γ ⊢ # : �, and ⊢ " ≡ # , thenD ⊢ M ≡ N, where

D = [[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 .

Recall that f denotes the trivial transformation from CC to CC( . This trivial transformation

commutes with the two term transformations by definition.

[[f (")]] = [["]] (3)

In addition, function definitions in [[f (")]]3 is a subset of the definitions in [["]]3 , because new

function definitions appear in CC’s type derivation trees as results of substitutions, but this does

not happen in CC( .

[[f (")]]3 ⊆ [["]]3 (4)

We show that f also preserves sequences of reductions. As a convention, we write " for f (")

when there is no ambiguity.

Lemma 3.13 (Preservation of reduction seqences (f)). If Γ ⊢ " ⊲
∗ # , then Γ ⊢ " ⊲

∗

" ′ where Γ ⊢ " ′ ≡ # .

We can finally prove the preservation of reduction sequences for dependently typed defunction-

alization (from CC to DCC) using the lemmas above.
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Lemma 3.14 (Preservation of reduction seqences). For all " and # , if Γ ⊢ M : A and

M ⊲
∗ N, then we have

DΓ ∪DM ∪DN ⊢ M ⊲
∗ M′, (5)

DΓ ∪DM ∪DN ⊢ M′
⊲
∗ N (6)

for some M′ where (DΓ ∪DM ∪DN ) = ( [[Γ]]3 , [[M]]3 , [[N ]]3 ) and (M,N) = ( [[M]], [[N ]]) .

Since ground types and values do not contain functions, [[E]]3 = ·, and the correctness of the

transformation is just a special case of Lemma 3.14.

Corollary 3.15. (Correctness) For all ground types � and values E of type �,

· ⊢ M : A ∧M ⊲
∗ v =⇒ DΓ ∪DM ⊢ M ⊲

∗ v′ where v′ ≡ v.

The proof of type-preservation requires three lemmas: substitution, preservation of reduction

sequences, and coherence. Lemma 3.14 established that dependently-typed defunctionalization pre-

serves reduction sequences with the help of CC( , and now we prove the remaining two lemmas

in a similar way. The substitution lemma states that defunctionalization is compatible with substi-

tutions.

Lemma 3.16 (Substitution). If Γ, x : A ⊢ M : B and Γ ⊢ N : A, thenD ⊢ [[M [N/x]]] ≡ M[N/x],

whereD = DΓ ∪DM ∪DN ∪DM [N/x] .

The coherence lemma states that defunctionalization is compatible with CC’s coherence judge-

ments.

Lemma 3.17 (Coherence). If Γ ⊢ M : A, Γ ⊢ N : A, and ⊢ M ≡ N, then D ⊢ M ≡ N, where

D = DΓ ∪DM ∪DN .

Finally, we show type preservation with an induction on CC’s type derivation rules.

Theorem 3.18 (Type preservation). For all well-typed programs M,

Γ ⊢ M : A =⇒ DΓ ∪DM ; Γ ⊢ M : A,

where (DΓ,DM) = ( [[Γ]]3 , [[M]]3 ) and (Γ,M,A) = ( [[Γ]], [[M]], [[A]]).

3.5 Consistency and Type Safety of DCC

As a dependent type theory, DCC should be type-safe when it acts as a programming language and

consistent when interpreted as a logic. Following Boulier et al. [2017] and Bowman and Ahmed

[2018], we prove these properties in this section by defining a backward transformation from DCC

to CC and showing that it preserves reduction sequences, so that reducing an expression in DCC is

equivalent to reducing an expression in CC. The transformation is type-preserving and turns the

logical interpretation of false in DCC into that of CC, so that valid proofs (i.e. well-typed programs)

in DCC correspond to valid proofs in CC. This reduces the problem of proving the type safety and

consistency of DCC to proving that of CC, which is a standard result [Coquand and Huet 1988]. In

other words, we show that DCC can be modelled by CC in a consistent and meaning-preserving

way. Type preservation for the backward transformation also requires the substitution, preservation

of reduction sequences, and coherence lemmas, similar to the proof of Theorem 3.18, whose proofs

are straightforward.

We define the backward transformation [[−]] with a new judgement (Fig. 6) of the formD; Γ ⊢

M : A {1 M and [[M]] , " . The translation maps variables, universes, Π-types, and ap-

plications back to their corresponding forms in CC, and maps label expressions L{M} where

L({x : A} , x : A ↦→ M : B) ∈ D into _x:A[M/x] .M [M/x] — a function with all of its free-

variable values substituted in, where �, " , and " stand for [[A]], [[M]], and [[M]] respectively
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D; Γ ⊢ M : A{1 M (Backward transformation)

D; Γ ⊢ x : A {1 x
b-Var

D; Γ ⊢ Ui : Ui+1 {1 *8
b-Universe

D; Γ ⊢ A : Ui {1 A

D; Γ, x : A ⊢ B : Uj {1 B

D; Γ ⊢ Πx:A.B : Umax(i,j) {1 Πx:A.B
b-Pi

L({x : A} , x :A ↦→ M : B) ∈ D

D; Γ ⊢ M : A{1 M D; Γ ⊢ A : U{1 A

D; Γ, x : A ⊢ M : B{1 M

D; Γ ⊢ L{M} : Πx:A[M/x] .B[M/x] {1 _x:A[M/x] .M [M/x]
b-Label

D; Γ ⊢ L : Πx:A.B {1 L

D; Γ ⊢ M : A{1 M

D; Γ ⊢ L@M : B[M/x] {1 L M
b-Apply

D; Γ ⊢ M : A{1 M

D; Γ ⊢ B : Ui

D ⊢ A ≡ B

D; Γ ⊢ M : B{1 M
b-Eqiv

Fig. 6. Backward transformation

(b-Label). Intuitively, [[−]] decompiles a label back to the function it represents. The backward

transformation also acts pointwise on type contexts.

In CC, the interpretation of the logical false is Πx:*0.x. There is no closed expression with the

false type. In DCC, the interpretation of false isΠx:U0 .x, so the backward transformation preserves

falseness by definition.

Next, we show that the backward transformation is compatible with substitutions. As a conven-

tion in this section, we write " for [[M]] when there is no ambiguity.

Lemma 3.19 (Backward transformation compatible with substitutions). If D; Γ, x : A ⊢

M : B andD; Γ ⊢ N : A, then [[M[N/x]]] = M [N/x].

Similar to proofs in Section §3.4, we show preservation of reduction sequences by showing that

the transformation preserves small-step reductions. Using that, we show the coherence lemma for

the backward transformation, and then the type preservation.

Lemma 3.20. IfD; Γ ⊢ M : A andD ⊢ M ⊲
∗ N, then M ⊲

∗ N.

Lemma 3.21. IfD; Γ ⊢ M : A,D; Γ ⊢ N : A, andD ⊢ M ≡ N, then ⊢ M ≡ N.

Lemma 3.22. IfD; Γ ⊢ M : A, then Γ ⊢ M : A.

As a corollary of Lemma 3.20 and Lemma 3.22, DCC is type-safe and consistent since CC is.

Theorem 3.23 (Type safety). IfD; · ⊢ M : A, thenD ⊢ M ⊲
∗ v for some irreducible value v.

That is, type safety guarantees that every well-typed closed DCC term reduces to a value in a

finite number of steps.

Theorem 3.24 (Consistency). There is no pair of a label context D and DCC term M such that

D; · ⊢ M : ΠA:U.A.
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Interpreting DCC as a logic, the termΠA:U.A (which produces a term of any typeA) corresponds

to false; it is backward-transformed to Π�:* .�, the representation of false in CC. Consistency of

DCCmeans that there is no closed term of typeΠA:U.A; if there were, then translation would yield
a corresponding term in CC, and CC would also be inconsistent.

4 IMPLEMENTATION

We provide a portable standalone implementation of the defunctionalization translation of §3,

written in OCaml and compiled to run in a web browser using js_of_ocaml [Vouillon and Balat

2014]. The implementation performs type checking of CC (§3.1) and DCC (§3.2) terms, abstract

defunctionalization (§3.3) and backwards translation from DCC to CC (§3.5), allowing the inter-

ested reader to experiment with the effects of the translation on real examples. We include several

ready-made examples, including dependent composition, dependent pairs and finite sets.

5 RELATED WORK

Type-preserving compilation. Type-preserving compilation was initially developed for optimiz-

ing compilation and verifying the compiled code; it has been used extensively in compilers of

simply-typed and polymorphic languages, and occasionally for dependently-typed languages. For

example, Tarditi et al. [1996] present TIL (typed intermediate language), an ML compiler featuring

type-directed code optimization of loops, garbage collections, and polymorphic function calls, and

Morrisett et al. [1999] study a type-preserving translation from System F to the typed assembly

language TAL. Xi and Harper [2001] later extended TAL to DTAL, an assembly language with a

limited form of dependent types that serves as a compilation target for Dependent ML.

Guillemette and Monnier [2008] also present a type-preserving compiler fromSystem F, but take

a different approach, building typed intermediate representations using generalized algebraic data

types and using the type system of the host language (GHC Haskell) to verify that each compiler

phase preserves types. Embedding typed transformations in this way is a popular technique in the

functional programming community, exemplified in work by Carette et al. [2009], which presents

type-preserving CPS transformations of an embedded language along with type-preserving opti-

mizations based on partial evaluation.

Necula [1997]’s proof-carrying code is another early method for generating reliable executables.

It relies on an external logical framework to check the correctness of proofs attached with the code.

Bowman and collaborators have developed several type-preserving translations for dependently-

typed languages, includingCPS transformation [Bowman et al. 2018], closure conversion [Bowman and Ahmed

2018] (building on typed closure conversion for System F by Minamide et al. [1996]), and transla-

tion to ANF [Koronkevich et al. 2022].

Defunctionalization. Defunctionalization was first presented by Reynolds [1972] as a program-

ming technique to translate a higher-order interpreter into a first-order one [Reynolds 1972]. It has

been used in a variety of applications, from ML compilers [Cejtin et al. 2000; Chin and Darlington

1996], to type-safe garbage collectors [Wang and Appel 2001], and encodings of higher-kinded

polymorphism [Yallop and White 2014].

Defunctionalizationwas originally presented as an untyped translation. Using a family ofmonomor-

phic apply functions tomake simply-typed defunctionalization type-preserving is a standardworkaround

in the literature [Bell et al. 1997; Cejtin et al. 2000; Nielsen 2000; Tolmach and Oliva 1998].

Danvy and Nielsen [2001] survey more examples of defunctionalization in practice.

Formalization of defunctionalization has up to this point focused on proving type preservation

and correctness of the transformation. Bell et al. [1997] have shown that the translation for simply
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typed programs is type preserving. Nielsen [2000] has proved its partial correctness with deno-

tational semantics, and Banerjee et al. [2001] have established total correctness using operational

semantics. Pottier and Gauthier [2004] have formalized type-preserving polymorphic defunction-

alization in System F extended with GADTs.

Closure conversion. Like defunctionalization, closure conversion transformations also involve rep-

resenting a closure as a first-order value that pairs a kind of code identifier with a collection of free

variables. The formulations of closure conversion in thework referenced above [Bowman and Ahmed

2018; Minamide et al. 1996] differ markedly from defunctionalization: while defunctionalization

involves a globally-defined map indexed by code identifiers (such as an apply function or our

label environment), these closure conversions instead locally transform functions into code-and-

environment pairs that can then be applied using a standard elimination rule. However, other for-

mulations of closure conversion [e.g. Appel 1992; Siek 2012] additionally lift functions to top-level,

making the transformation more similar to defunctionalization.

Closure conversion plays a key role in compilers for many functional languages, including

Scheme [Steele Jr 1978], CAML [Mauny and Suárez 1986], StandardML [Cejtin et al. 2000],Haskell [Leshchinskiy et al.

2006] and others. Recent work has focused on establishing sophisticated semantic properties, such

as correctness of closure conversion in the presence of mutable state and control effects (even

when linked with foreign-language code) [Mates et al. 2019], and preservation of time and space

properties [Paraskevopoulou and Appel 2019].

Refunctionalization. Our backward translation (See §3.5) is related to refunctionalization [Danvy and Millikin

2009], the left-inverse of defunctionalization. As in refunctionalization, we replace target applica-

tions M@N with source applications M N , and labels L{M} with abstractions (_x:A.M) [M/x]

based on their implementations L({x : A} , x :A ↦→ M : B) in the label context.
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A DEPENDENT DEFUNCTIONALIZATION IN AGDA

{-# OPTIONS –type-in-type #-}

data Π : (A : Set) → (A→ Set) → Set

infixl 9 _$_

_$_ : ∀ {A : Set} {p : A→ Set}→ Π A p → (x : A) → p x

{-# NO_POSITIVITY_CHECK #-}

data Π where

F1 : Π Set (_ A →

Π (Π A (_ _ → Set)) (_ B →

Π (Π A (_ x → Π (B $ x) (_ _→ Set))) (_ C →

Π (Π A (_ y → Π (B $ y) (_ z → C $ y $ z))) (_ f →

Π (Π A (_ x → B $ x)) (_ g →

Π A (_ x →

C $ x $ (g $ x)))))))

F2 : (A : Set) →

Π (Π A (_ _ → Set)) (_ B →

Π (Π A (_ x → Π (B $ x) (_ _→ Set))) (_ C →

Π (Π A (_ y → Π (B $ y) (_ z → C $ y $ z))) (_ f →

Π (Π A (_ x → B $ x)) (_ g →

Π A (_ x →

C $ x $ (g $ x))))))

F3 : (A : Set) →

(B : Π A (_ _→ Set)) →

Π (Π A (_ x → Π (B $ x) (_ _→ Set))) (_ C →

Π (Π A (_ y → Π (B $ y) (_ z → C $ y $ z))) (_ f →

Π (Π A (_ x → B $ x)) (_ g →

Π A (_ x →

C $ x $ (g $ x)))))

F4 : (A : Set) →

(B : Π A (_ _→ Set)) →

(C : (Π A (_ x → Π (B $ x) (_ _→ Set))))→

Π (Π A (_ y → Π (B $ y) (_ z → C $ y $ z))) (_ f →

Π (Π A (_ x → B $ x)) (_ g →

Π A (_ x →

C $ x $ (g $ x))))

F5 : (A : Set) →

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 127. Publication date: June 2023.

https://doi.org/10.1007/978-3-642-32202-0_5
https://doi.org/10.1145/507635.507657
https://doi.org/10.1007/978-3-319-07151-0_8


Defunctionalization with Dependent Types 127:25

(B : Π A (_ _→ Set)) →

(C : (Π A (_ x → Π (B $ x) (_ _→ Set))))→

(f : (Π A (_ y → Π (B $ y) (_ z → C $ y $ z))))→

Π (Π A (_ x → B $ x)) (_ g →

Π A (_ x →

C $ x $ (g $ x)))

F6 : (A : Set) →

(B : Π A (_ _→ Set)) →

(C : (Π A (_ x → Π (B $ x) (_ _→ Set))))→

(f : (Π A (_ y → Π (B $ y) (_ z → C $ y $ z))))→

(g : (Π A (_ x → B $ x))) →

Π A (_ x →

C $ x $ (g $ x))

{-# TERMINATING #-}

F1 $ A = F2 A

F2 A $ B = F3 A B

F3 A B $ C = F4 A B C

F4 A B C $ f = F5 A B C f

F5 A B C f $ g = F6 A B C f g

F6 A B C f g $ x = f $ x $ (g $ x)

B DEFUNCTIONALIZATION OF FULLY-DEPENDENT COMPOSE

The fully dependent compose.

compose ::= _� :*0. _� : (ΠG :�.*0). _� : (ΠG :�.Π~ :� G.*0).

_5 : (Π~ :�.(ΠI :� ~.� ~ I)). _6 : (ΠG :�.� G).

_G :�. 5 G (6 G)

Defunctionalized non-dependent compose.

D ::= L2({B : U0,C : U0,A : U0, f : (Π_ : B.C), g : (Π_ : A.B)}, x : A ↦→ f@(g@x) : C),
L1({B : U0,C : U0,A : U0, f : (Π_ : B.C)},

g : (Π_ : A.B) ↦→ L2{B,C,A, f, g} : Πx : A.C),
L0({B : U0,C : U0,A : U0},

f : (Π_ : B.C) ↦→ L1{B,C,A, f} : Πg : (Π_ : A.B).Πx : A.C)
Γ ::= A : U0,B : U0,C : U0

compose ::= L0{}

composeT ::= Πf : (Π_ : B.C).Πg : (Π_ : A.B).Πx : A.C

Defunctionalized fully dependent compose.
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D ::= L5({A : U0,B : (Π_ : A.U0),C : (Πx : A.Π_ : (B@x).U0),

f : (Πx : A.Πy : (B@x).(C@x)@y), g : (Πx : A.B@x)},

x : A ↦→ (f@x)@(g@x) : (C@x)@(g@x)),

L4({A : U0,B : (Π_ : A.U0),C : (Πx : A.Π_ : (B@x).U0),

f : (Πx : A.Πy : (B@x).(C@x)@y)},

g : (Πx : A.B@x) ↦→ L5{A,B,C, f, g} : Πx : A.(C@x)@(g@x)),

L3({A : U0,B : (Π_ : A.U0),C : (Πx : A.Π_ : (B@x).U0)},

f : (Πx : A.Πy : (B@x).(C@x)@y) ↦→ L4{A,B,C, f} :
Πg : (Πx : A.B@x).Πx : A.(C@x)@(g@x)),

L2({A : U0,B : (Π_ : A.U0)},C : (Πx : A.Π_ : (B@x).U0) ↦→ L3{A,B,C} :
Πf : (Πx : A.Πy : (B@x).(C@x)@y).Πg : (Πx : A.B@x).Πx : A.(C@x)@(g@x)),

L1({A : U0},B : (Π_ : A.U0) ↦→ L2{A,B} : ΠC : (Πx : A.Π_ : (B@x).U0).

Πf : (Πx : A.Πy : (B@x).(C@x)@y).Πg : (Πx : A.B@x).Πx : A.(C@x)@(g@x)),

L0({},A : U0 ↦→ L1{A} : ΠB : (Π_ : A.U0).ΠC : (Πx : A.Π_ : (B@x).U0).

Πf : (Πx : A.Πy : (B@x).(C@x)@y).Πg : (Πx : A.B@x).Πx : A.(C@x)@(g@x))

compose ::= L0{}

composeT ::= ΠA:U0. ΠB:(Πx:A.U0). ΠC:(Πx:A.Πy:B@ x.U0).

Πf:(Πx:A.Πy:B@ x.(C@ x@ y)).

Πg:(Πx:A.B@ x).

Πx:A.(C@ x)@ g@ x

A sketched derivation of the defunctionalization transformation.

�, �,�, 5 , 6 ⊢ _5G.5 G (6 G) {3 L5 ({A,B,C, f, g}, x : _ ↦→ (f@ x)@ g@ x : _)
d-Lambda

�, �,�, 5 ⊢ _46._5G.5 G (6 G) {3 · · · ,L4({A,B,C, f}, g : _ ↦→ L5{A,B,C, f, g} : _)
d-Lambda

�, �,� ⊢ _35 ._46._5G.5 G (6 G) {3 · · · ,L3({A,B,C}, f : _ ↦→ L4{A,B,C, f} : _)
d-Lambda

�, � ⊢ _2�._3 5 ._46._5G.5 G (6 G) {3 · · · ,L2({A,B},C : _ ↦→ L3{A,B,C} : _)
d-Lambda

� ⊢ _1�._2�._3 5 ._46._5G.5 G (6 G) {3 · · · ,L1 ({A},B : _ ↦→ L2{A,B} : _)
d-Lambda

· ⊢ _0�._1�._2�._3 5 ._46._5G.5 G (6 G) {3 · · · ,L0({}, A : _ ↦→ L1{A} : _)

Received 2022-11-10; accepted 2023-03-31

C PROOFS FOR SECTION 3 (DEFUNCTIONALIZINGWITH DEPENDENT TYPES)

Lemma 3.9. For any well-typed expression Γ ⊢ M : A in CC, [[A]]3 ⊆ [[M]]3 .

Proof. By induction on rules defined in Fig. 4b.

Case (d-Lambda). The goal is to show that [[Πx:A.B]]3 ⊆ [[_8G :A.M]]3 . By assumption,

Γ ⊢ _8G :A.M : Πx:A.B {3 DA ∪DM ,Li({x : A} , x :A ↦→ M : B).

In other words, [[_8G :A.M]]3 = [[A]]3 ∪ [[M]]3 with definition of function _8 appended to it. By

definition, [[Πx:A.B]]3 = [[A]]3 ∪ [[B]]3 . We have [[A]]3 ⊆ [[_8G :A.M]]3 and [[B]]3 ⊆ [[_8G :A.M]]3 by

the induction hypothesis (since Γ, x : A ⊢ M : B, [[B]]3 ⊆ [[M]]3 ).

Other cases are either trivial or follows simply from definitions.

�

Lemma 3.10 (Preservation of small step reductions). If Γ ⊢ " : � and " ⊲ # , then [[Γ]]3 ∪ [["]]3 ⊢

M ⊲
∗ N.

Proof. By induction on the reduction rules of CC( .
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Case (s-red-Beta). Assuming (_8G :�.") # ⊲ "{G ↦→ # }, the goal is to show that

D ⊢ Li{x}@N ⊲
∗ M[N/x],

where D = [[Γ]]3 ∪ [["]]3 and x corresponds to the free variables in _8 . By definition of [[−]]3 , we

have Li({x : _} , x : _ ↦→ M : _) ∈ D (ignoring type information). So, D ⊢ Li{x}@N ⊲ M[x/x,N/x] =

M[N/x].

Case (s-red-Beta-Eta). Similar.

Other cases are trivial.

�

Lemma 3.12 (Coherence (CC( )). If Γ ⊢ " : �, Γ ⊢ # : �, and ⊢ " ≡ # , then D ⊢ M ≡ N, where

D = [[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 .

Proof. By induction on the equivalence rules of CC( .

Case (s-eq-Reduce). By Lemma 3.11.

Case (s-eq-Eta1). Assume thatwe have Γ ⊢ " : ΠG :�. �, Γ ⊢ # : ΠG :�. �, and ⊢ " ≡ # by rule s-eq-Eta1,

then we must have " ⊲
∗ _8G :�." ′, # ⊲

∗ # ′, and ⊢ " ′ ≡ # ′ G .

By Lemma 3.11, we haveD1 ⊢ M⊲
∗Li{x},D2 ⊢ N⊲

∗N′, whereD1 = [[Γ]]3∪[["]]3 ,D2 = [[Γ]]3∪[[# ]]3 ,

and Li({x : _} , x : _ ↦→ M : _) ∈ D1. By the induction hypothesis, D3 ⊢ M′
⊲
∗ N′@ x, where

D3 = [[Γ]]3 ∪ [[" ′]]3 ∪ [[# ′]]3 .

The goal is to show thatD ⊢ M ≡ N using rule d-eq-Eta1 (shown below).

D ⊢ L ⊲∗ L{N}

D ⊢ M ⊲
∗ M′

L({x : A} , x :A ↦→ N : B) ∈ D

D ⊢ N[N/x] ≡ M′@ x

D ⊢ L ≡ M
d-eq-Eta1

Wealready have all the premises likeM ⊲
∗Li{x}, etc., but they are not judged in the desired label context

D = [[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 . We only need to show thatD1,D2, andD3 are subsets ofD and to apply

the weakening theorem.D1 andD2 are clearly subsets ofD. By (1), we have [[" ′]]3 ⊆ [[Γ]]3 ∪ [["]]3
and [[# ′]]3 ⊆ [[Γ]]3 ∪ [[# ]]3 . Therefore, D3 is also a subset ofD.

Case (s-eq-Clo1). Similar, but more tedious.

Case (s-eq-Eta2 and s-eq-Clo2). By symmetry.

(Note that rules s-eq-Reduce, s-eq-Eta1, and s-eq-Eta2 are not listed in Fig. 5, but they are exactly the

same as eq-Reduce, eq-Eta1, and eq-Eta2 in Fig. 2).

�

Lemma 3.13 (Preservation of reduction seqences (f)). If Γ ⊢ " ⊲
∗ # , then Γ ⊢ " ⊲

∗ " ′ where Γ ⊢

" ′ ≡ # .

Proof. We firstly proof that Γ, x : A ⊢ M : B and Γ ⊢ N : A implies that ⊢ f ("[# /G]) ≡ "{G ↦→ # }. We

prove this by induction on the type derivations of" .

Case (ty-lambda). By definition, (_y:A.M)[N/x] = _y:A[N/x] .M [N/x]. So,f ((_y:A.M)[N/x]) = _~ :f (A[N/x]).f (M [N/x]).

We have

((_~:�." ){G ↦→ # }) ~ ⊲ ("{G ↦→ # }){~ ↦→ ~} ≡ "{G ↦→ # }.

By the induction hypothesis,"{G ↦→ # } ≡ f (M [N/x]). Hence, we havef ((_y:B.M)[N/x]) ≡ ((_~:�."){G ↦→ # })

by rule s-eq-Eta1.

Other cases are trivial. Using this result, we have (_G :�." ) # ⊲ "{G ↦→ # } ≡ f (M [N/x]), so, f preserves

small step reductions. Again, the preservation of reduction sequences follows immediately from this. �
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Lemma 3.14 (Preservation of reduction seqences). For all" and # , if Γ ⊢ M : A and M ⊲
∗ N, then we

have

DΓ ∪DM ∪DN ⊢ M ⊲
∗ M′, (5)

DΓ ∪DM ∪DN ⊢ M′
⊲
∗ N (6)

for some M′ where (DΓ ∪DM ∪DN ) = ([[Γ]]3 , [[M]]3 , [[N ]]3 ) and (M,N) = ([[M]], [[N ]]) .

Proof. Suppose that Γ ⊢ M : A and M ⊲
∗ N . Then, we have ⊢ " ⊲

∗ " ′ and ⊢ " ′ ≡ # for some" ′, since

f preserves reduction sequences. By Lemma 3.11 and Lemma 3.12,

[[Γ]]3 ∪ [["]]3 ⊢ M ⊲
∗ M′

[[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 ⊢ M′ ≡ N.

Finally, since ([[Γ]]3 ∪ [["]]3 ) and ([[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 ) are both subsets of (DΓ ∪DM ∪DN ), we have

DΓ ∪DM ∪DN ⊢ M ⊲
∗ M′ andDΓ ∪DM ∪DN ⊢ M′

⊲
∗ N by weakening. �

Corollary 3.15. (Correctness) For all ground types � and values E of type �,

· ⊢ M : A ∧M ⊲
∗ v =⇒ DΓ ∪DM ⊢ M ⊲

∗ v′ where v′ ≡ v.

Lemma 3.16 (Substitution). If Γ, x : A ⊢ M : B and Γ ⊢ N : A, then D ⊢ [[M [N/x]]] ≡ M[N/x], where

D = DΓ ∪DM ∪DN ∪DM [N/x] .

Proof. From the proof of Lemma 3.13, we know that Γ, x : A ⊢ M : B and Γ ⊢ N : A implies that

f ("[# /G]) ≡ "{G ↦→ # }. This further implies that D′ ⊢ [[f ("[# /G])]] ≡ [["{G ↦→ # }]], where D′ =

[[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 ∪ [[f ("[# /G])]]3 .

By (Equation (4)), D′ ⊆ D. Also, [[f ("[# /G])]] = [["[# /G]]], [[Γ]] = Γ, and [["]][[[# ]]/x] = M[N/x] by

(2) and (3). Therefore, we have D ⊢ [[M [N/x]]] ≡ M[N/x] by weakening. �

Lemma 3.17 (Coherence). If Γ ⊢ M : A, Γ ⊢ N : A, and ⊢ M ≡ N, then D ⊢ M ≡ N, where D =

DΓ ∪DM ∪DN .

Proof. Assume that Γ ⊢ M : A, Γ ⊢ N : A, and ⊢ M ≡ N . We have ⊢ " ≡ # by definition, since

the source language does not contain explicit substitution. By Lemma 3.12, we have D′ ⊢ M ≡ N, where

D′ = [[Γ]]3 ∪ [["]]3 ∪ [[# ]]3 . Since D
′ ⊆ D, we have D ⊢ M ≡ N by weakening. �

Theorem 3.18 (Type preservation). For all well-typed programs M,

Γ ⊢ M : A =⇒ DΓ ∪DM ; Γ ⊢ M : A,

where (DΓ,DM ) = ([[Γ]]3 , [[M]]3 ) and (Γ,M,A) = ([[Γ]], [[M]], [[A]]).

Proof. By proving the following two statements together with a simultaneous induction on mutually-

defined judgements ⊢ Γ and Γ ⊢ M : A.

(1) ⊢ Γ =⇒ ⊢ DΓ; Γ.

(2) Γ ⊢ M : A =⇒ DΓ ∪DM ; Γ ⊢ M : A.

Statement 1 follows trivially from the inductive hypothesis. We look at the cases for statement 2.

Case (ty-Var, ty-Universe, and ty-Pi). Trivial by the induction hypothesis.

Case (ty-Apply) Suppose Γ ⊢ M N : B[N/x]. The goal is to show thatD ; Γ ⊢ M@N : [[�[# /G]]], where

D = (DΓ ∪ [[" # ]]3 ). We have DΓ ∪DM ; Γ ⊢ M : Πx:A.B and DΓ ∪DN ; Γ ⊢ N : A by the induction

hypothesis. By rule d-ty-Apply and weakening, DΓ; Γ ⊢ M@N : B[N/x]. By the substitution lemma,

D′ ⊢ B[N/x] ≡ [[B[N/x]]] , where D′ = DΓ ∪ DB ∪ DN ∪ DB [N/x] . We have the goal if D′ ⊆ D.

Indeed,

(1) DΓ ⊆ D by def.

(2) DN ⊆ D sinceDN ⊆ [[M N ]]3 by def.

(3) DB [N/x] ⊆ D since DB [N/x] ⊆ [[M N ]]3 by def.

(4) DB ⊆ D, becauseDN ⊆ [[Πx:A.B]]3 by def., [[Πx:A.B]]3 ⊆ DM by Γ ⊢ M : Πx:A.B and Lemma 3.9,

andDM ⊆ D by def.
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Case (ty-Lambda) Suppose Γ ⊢ _8G :A.M : Πx:A.B. The goal is D; Γ ⊢ Li{x} : Πx:A.B, where D =

DΓ ∪ DM ,Li({x : A} , x : A ↦→ M : B). We have Γ ⊢ x : A since G are well-typed free variables,

therefore, we have D; Γ ⊢ x : A by the inductive hypothesis and weakening. The definition of Li is in

D.

If ⊢ D; Γ, then we have our goal by rule d-ty-Label. We have ⊢ DΓ∪DM ; Γ by the induction hypothesis

and our assumption that Γ, x : A ⊢ M : B. Letting Γfv = ·, x : A, if the following statements are true,

then we have ⊢ D; Γ by rule d-wf-Label and weakening.

(a) DΓ ∪DM ; Γfv ⊢ Πx:A.B : U.

(b) DΓ ∪DM ; Γfv, x : A ⊢ M : B.

By Lemma 3.5, �+ (_8G :A.M) ⊢ _8G :A.M : Πx:A.B, so, �+ (_8G :A.M) ⊢ Πx:A.B : U , and �+ (_8G :A.M), x :

A ⊢ M : B. Therefore, conditions (a) and (b) are true by the induction hypothesis and weakening.

Case (ty-Eqiv). By the coherence lemma.

�

Lemma 3.19 (Backward transformation compatible with substitutions). If D; Γ, x : A ⊢ M : B and

D; Γ ⊢ N : A, then [[M[N/x]]] = M [N/x].

Proof. By induction on the type derivation ofM.

Case (d-ty-Label). Assume that D; Γ, y : C ⊢ L{M} : Πx:A.B, L({Γ} , x : A ↦→ M : B) ∈ D, and

D; Γ ⊢ N : C. The goal is to show that [[L{M}[N/y]]] = (_x:A[M/x] .M [M/x])[N/y]. Indeed, we

have

[[L{M}[N/y]]] = [[L{M[N/y]}]] = _x:A[(M [N/y])/x] .M [(M [N/y])/x]

by the induction hypothesis, and

(_x:A[M/x] .M [M/x])[N/y] = _x:((A[M/x])[N/y]).((M [M/x])[N/y])

= _x:A[(M [N/y])/x ] .M [(M [N/y])/x]

since ~ is not free in � and in " (G are all the free variables in them).

Ohter cases are either trivial or follows directly from the induction hypothesis.

�

Lemma 3.20. IfD; Γ ⊢ M : A andD ⊢ M ⊲
∗ N, then M ⊲

∗ N.

Proof. We firstly show by induction that the backward transformation preserves small-step reductions.

The only case is rule d-red-Beta.

Case (d-red-Beta). Assume that D; Γ ⊢ L{M}@M′ : B, L({Γ} , x : A ↦→ N : B) ∈ D, and D ⊢

L{M}@N ⊲
∗ N[M/x,M′/x]. We have [[L{M}@M′]] = _x:A[M/x] .M [M/x] by definition. Indeed,

we have

(_x:A[M/x] .M [M/x]) M ′
⊲ (N [M/x])[M ′/x]

= N [M/x,M ′/x] since G is not free in"

= [[N[M/x,M′/x]]] by Lemma 3.19.

Therefore, the backward transformation preserves reduction sequences by a trivial induction on the num-

ber of small steps in a reduction sequence.

�

Lemma 3.21. IfD; Γ ⊢ M : A,D; Γ ⊢ N : A, andD ⊢ M ≡ N, then ⊢ M ≡ N.

Proof. By induction on DCC’s equivalence rules.

Case (d-eq-Reduce). By Lemma 3.20.
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Case (d-eq-Eta1). Assume that we have

D ⊢ L ⊲∗ L{N}

D ⊢ M ⊲
∗ M′

L({x : A} , x :A ↦→ N : B) ∈ D

D ⊢ N[N/x] ≡ M′@ x

D ⊢ L ≡ M
d-eq-Eta1

.

Our goal is to show that ⊢ L ≡ M. By Lemma 3.20, L ⊲
∗ (_x:A[N/x] .N [N /x]) and M ⊲

∗ M ′. By the

induction hypothesis and Lemma 3.19, ⊢ N ′[N/x] ≡ M ′ x. Therefore, ⊢ L ≡ M by CC’s rule eq-Eta1.

Case (d-eq-Eta2). By symmetry.

�

Lemma 3.22. IfD; Γ ⊢ M : A, then Γ ⊢ M : A.

Proof. By proving the following two statements together with a simultaneous induction on mutually-

defined judgements ⊢ D; Γ andD; Γ ⊢ M : A.

(1) ⊢ D; Γ =⇒ ⊢ Γ.

(2) D; Γ ⊢ M : A =⇒ Γ ⊢ M : A.

Statement 1 follows trivially from the inductive hypothesis. We look at the cases for statement 2.

Case (d-ty-Var, d-ty-Universe, and d-ty-Pi). Trivial by induction.

Case (d-ty-Apply). Assume that D; Γ ⊢ M@N : B[N/x], the goal is to show that Γ ⊢ "# : [[B[N/x]]].

By the induction hypothesis, we have Γ ⊢ M : Πx:A.B and Γ ⊢ N : A, which implies that Γ ⊢ M N :

B[N/x]. By Lemma 3.19, [[B[N/x]]] ≡ B[N/x]. Therefore, we have Γ ⊢ "# : [[B[N/x]]] by rule Eqiv.

Case (d-ty-Label). Similar.

Case (d-ty-Eqiv). By Lemma 3.21

�

Theorem 3.23 (Type safety). IfD; · ⊢ M : A, thenD ⊢ M ⊲
∗ v for some irreducible value v.

Theorem 3.24 (Consistency). There is no pair of a label context D and DCC term M such that D; · ⊢ M :

ΠA:U.A.
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