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1 Introduction
Dependent types are the most sophisticated types available in programming languages. They
allow programmers to specify a function’s properties precisely with logical statements, and
the type system ensures that such properties hold for well-typed programs. For example,
we can state that a function contains no out-of-bound array access, an implementation of
merge sort correctly sorts a list, and server code fully respect complex network protocols. The
reliability and security of dependently typed programs are becoming increasingly important
to our complicated large-scale projects where correctness is critical. Alas, the performance of
existing compilers’ generated output is no match to our practical need.

To see this more precisely, take a look at the following comparison between the usual and
the dependently typed implementations of lists, polymorphic over some type A. The dependent
version at the right is often referred to as vectors.

data List A : Type
[] : List A
Cons : A → List A → List A

data Vec A : (n : Nat) → Type
[] : List A 0
Cons : A → Vec A n → Vec A (suc n)

As you can see, two implementations have the same constructors, but Vec has a type index,
a natural number n that tracks its length. Empty lists have zero length and Cons adds the length
by one. Function types may depend on the type indices (as in repN) and perform computations
on them (as in append).
(* repN x n creates a list of n copies of x *)
repN : ∀{A} → (x : A) → (n : Nat) → Vec A n
(* compiler infers implicit arguments {A m n} automatically *)
append : ∀{A m n} → Vec A m → Vec A n → Vec A (m + n)

Using the propositions-as-types analogy, we view dependent types as predicates over their
indices. We can define an indexed type LessThan x y over two natural numbers and its inhab-
itants represent proofs of x being less than y. Functions can take an argument of this type as
a constraint, for example, the lookup below that finds an element at position i from a vector
of length n. By requiring a proof of LessThan i n, lookup promises no index-out-of-bound
errors.
lookup : ∀{n} → Vec A n → (i : Nat) → LessThan i n → A
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Figure 1: Current development of type-preserving compilers for dependent types

What if wewant to compile and run dependently typed programs? The performancewould
be dreadful, if we naively turn it into untyped assembly. Computationally, the vector imple-
mentation above does the same operations as the non-dependent lists, but it pays more space
to store the type indices and wastes cycles to compute proof terms. It carries the extra work
introduced for correctness checking at compile time to runtime, yet throws away the type
system’s safety guarantee by compiling into untyped target code, making the output fragile
to linking errors and compiler-induced bugs. In other words, we get inefficient and possibly
unsafe code!

An ideal compiler is type-preserving and supports erasure. It should transform source
code into a dependently-typed assembly language to enable correctness checking for the gen-
erated target code, and remove the computationally irrelevant parts before execution to obtain
performance comparable or even better than non-dependent implementations (since we can
safely eliminate runtime bound checks).

We are only one step away from such ideal compilers. As shown in Fig. 1, previous work
established well-studied type-preserving code transformations that successively remove ab-
straction to turn high-level source code into low-level intermediate representations. Erasure
is achieved in current dependently typed languages with Quantitative type theory (QTT) [4],
which allows users to mark code with usage information that indicates runtime-irrelevance
and helps compilers to perform reliable memory-usage optimizations. The last piece required
now is a typed assembly language that incorporates both dependent and quantitative types,
and is possible to generate from the resulting intermediate code of type-preserving transfor-
mations.

My proposed project fills in this last gap with a quantitatively and dependently typed
assembly language, which will serve as the target language of future compilers, making it
possible for the first time to build high-assurance compilers for languages with extremely
sophisticated type systems.

The remaining of this document is structured as follows. I first cover the prerequisite
knowledge in dependent type theory and its compilation in §2. Then, I give a literature review
on quantitative type theory(§3.1) and typed assembly languages(§3.2), explaining why QTT
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is the best approach for runtime erasure and why previous typed assembly languages are not
suitable for type-preserving compilation with dependent types. §4 reports my initial progress:
the defunctionalization transformation for dependent types (§4.1), a dependently typed as-
sembly language derived from the defunctionalized intermediate representation (§4.2), and
defunctionalization for quantitative type theory (§4.3). In §5, I outline the remaining steps
toward a QTAL, a quantitatively and dependently typed assembly language, and a timeplan is
given at the end.

2 Prerequisites

2.1 Dependent type theory
Dependent type theory is similar to the simply-typed lambda calculus (STLC), presented with
the usual typing judgement Γ ⊢ 𝑀 : 𝐴which means “in typing context Γ, the expression𝑀 has
type 𝐴”, where Γ is a list of variables and their associated types. The type theory I informally
introduce here is the Calculus of Constructions with predicative universes (also known as
CCω, see more in e.g. [31, 5, 27]), extended with common datatypes like natural numbers and
identity types. Its full syntax can be found in Fig. 2.

Expressions 𝐴, 𝐵, 𝐿,𝑀, 𝑁, 𝑃 ::= 𝑥 | 𝑈 | Πx :A.B | M N | 𝜆x :A.M
| Σx :A.B | (𝑀, 𝑁 ) | letP (x, y) = M inN
| Nat | zero | suc M | iterP (M,N ,N ′)
| IdA(M,N ) | reflA(M) | JC (M,M′, P,N )

Universes 𝑈 ::= 𝑈𝑖

Contexts Γ ::= · | Γ, x :A

Figure 2: Syntax of CCω

We start with the familiar rules for introducing and eliminating lambda abstractions in the
simply typed setting.

stlc-Lambda
Γ, x :A ⊢ M : B

Γ ⊢ 𝜆x :A.M : A → B

stlc-Apply
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Dependent types generalize these rules to express the type dependency of output types
on input values. Rule ty-Lambda constructs a dependent function type, or a Π-type, instead
of the usual arrow type. It means that the output type 𝐵 depends on the value of the input
(of type 𝐴), represented by the variable 𝑥 (which is bounded in 𝐵), since the input value is
unknown until the function is applied to an argument. For rule ty-Apply, we substitute the
input expression 𝑁 for 𝑥 in 𝐵 to get the result type of the application. As a convention, I write
𝐴 → 𝐵 for non-dependent functions.

cc-Lambda
Γ, x :A ⊢ M : B

Γ ⊢ 𝜆x :A.M : Πx :A.B

cc-Apply
Γ ⊢ M : Πx :A.B Γ ⊢ N : A

Γ ⊢ M N : B[N/x]

The most distinguished feature of dependent type theory is the no-distinction between
types and terms. In other words, any type can be a treated as a term, and functions are allowed
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to take types and return types. Polymorphic functions are just functions with type arguments,
for example, the polymorphic identity function is (𝜆𝐴:U0. 𝜆x :A.x). Here,𝑈0 is a universe (also
known as a sort or a kind), which is the type of types. An impredicative universe is a single
sort that is the type of all types, including itself. It is simple, yet the impredicativity can
be exploited to form a paradoxical construction, breaking the logical consistency of the type
theory [16]. Instead, we use a set of universes indexed by natural numbers {𝑈𝑖}𝑖∈N with the
type of𝑈𝑖 being𝑈𝑖+1 (a predicative hierarchy), which prevents such paradox.

Since types are terms, Γ ⊢ 𝐴 : 𝑈𝑖 (for some 𝑖) is equivalent to stating that “𝐴 is a well-
formed type under context Γ” 1. Ground types like natural numbers and booleans are in𝑈0. A
dependent function Πx :A. B is in the larger universe between the universes of its input type
𝐴 and its output type 𝐵.

cc-Nat
⊢ Γ

Γ ⊢ Nat : 𝑈0

cc-Pi
Γ ⊢ A : 𝑈𝑖 Γ, x :A ⊢ B : 𝑈 𝑗

Γ ⊢ Πx :A.B : 𝑈𝑚𝑎𝑥 (𝑖, 𝑗)

A context is well-formed (denoted as ⊢ Γ) when all of its types are well-formed. The vari-
able rule, introductions of base types like Nat, and the universe rule (the base cases of type
judgements) are only valid under well-formed contexts.

cc-wf-Empty

⊢ ·

cc-wf-Cons
⊢ Γ Γ ⊢ A : U

⊢ Γ, x :A

cc-Var
x : A ∈ Γ ⊢ Γ

Γ ⊢ x : A

cc-Universe
⊢ Γ

Γ ⊢ 𝑈𝑖 : 𝑈𝑖+1

Dependent type theory has the usual 𝛽𝜂-equality as in STLC, treated as the definitional
equality of the type theory, denoted as ⊢ 𝑀 ≡ 𝑁 2. Note that the equivalence also applies to
types, for example, ⊢ (𝜆𝑎 : 𝑈0. 𝑎) 𝐴 ≡ 𝐴, by 𝛽-reduction. So, two types could be equivalent
while being syntactically different, and we have a conversion rule for transporting equivalent
types in typing judgements.

cc-Eqiv
Γ ⊢ M : A Γ ⊢ B : U ⊢ A ≡ B

Γ ⊢ M : B

Dependent pairs

In STLC, it is useful to define a product type for pairs of data.

stlc-Pair
Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M,N ) : A × B

stlc-PairElim
Γ ⊢ M : A × B Γ, x :A, y :B ⊢ N : P

Γ ⊢ let (x, y) = M inN : P

Its elimination rule states that to use an expression of type 𝐴 × 𝐵, it is sufficient to specify
the computations on its two canonical components. We get the usual projections 𝜋1𝑀 by
let (x, y) = M in x and similarly for 𝜋2. As expected, the definitional equality for the eliminator

1The context Γ is involved here because the type may depend on variables in it, which makes contexts of
dependent types telescopes instead of simple lists.

2Definitional equality can be given in a typed form like Γ ⊢ 𝑀 ≡ 𝑁 : 𝐴, which is preferred in general, but I
give the untyped version here for simplicity.
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is

⊢ let (x, y) = (M1,M2) inN ≡ N [M1/x,M2/y] .
Dependent pairs generalize this idea, allowing the type of the second component to de-

pend on the value of the first, constructing a Σ-type. Note that the elimination rule is also
generalized, which can produce a term whose type depends on the value of the pair. This is
known as strong elimination. Some type theory use a weak elimination rule which can only
eliminate to types that do not depend on the pair.

cc-Pair
Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ (M,N ) : Σx :A.B

cc-PairElim
Γ, z :Σx :A.B ⊢ P : 𝑈𝑖 Γ ⊢ M : Σx :A.B

Γ, x :A, y :B ⊢ N : P [(x, y)/z]
Γ ⊢ letP (x, y) = M inN : P [M/z]

Propositions as types

In STLC, we have the Curry-Howard correspondence between type theory and logic, summa-
rized in the table below.

Type theory Logic
Types 𝐴 Propositions 𝐴

Terms 𝑎 : 𝐴 Proofs of propositions 𝐴
Functions 𝐴 → 𝐵 Implications 𝐴 ⊃ 𝐵

Products 𝐴 × 𝐵 Conjunctions 𝐴 ∧ 𝐵

Sums 𝐴 + 𝐵 Disjunctions 𝐴 ∨ 𝐵

In dependent type theory, a type 𝐵 that depends on another type𝐴 is viewed as a predicate
over elements of 𝐴. So, a dependent function of type Πx :A. B that gives an instance 𝐵(𝑎) for
every 𝑎 of type𝐴 corresponds to the universal quantifier ∀𝑎 ∈ 𝐴.𝐵(𝑎). A dependent pair (𝑎, 𝑏)
of type Σx :A.B is like a piece of evidence 𝑎 ∈𝐴 such that 𝐵(𝑎) holds, and it corresponds to the
existential quantifier ∃𝑎 ∈𝐴. 𝐵(𝑎).

Type theory Logic
Dependent types 𝐵 over 𝑎 : 𝐴 Predicates 𝐵 over 𝑎 ∈ 𝐴

Dependent functions Πx :A.B Universal quantifiers ∀𝑎 ∈ 𝐴. 𝐵(𝑎)
Dependent pairs Σx :A.B Existential quantifiers ∃𝑎 ∈𝐴. 𝐵(𝑎)

We reason about our programs’ properties with types, therefore, it is essential that the
type theory’s corresponding logic is consistent and type checking is decidable, otherwise, our
reasoning is unsound or cannot be verified. Since types could be complicated expressions
and rule cc-Eqiv involves equivalence checking of two types (usually by normalizing them
and compare syntactically), the type theory must be terminating for decidable type checking.
Termination and consistency of CCω are well-established in previous work (e.g. see [31, 18,
44]).

Natural numbers

The constructors of natural numbers are exactly the same as in simply typed languages.
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cc-Zero
⊢ Γ

Γ ⊢ zero : Nat

cc-Suc
Γ ⊢ M : Nat

Γ ⊢ suc M : Nat

Its eliminator, an iterator, has a generalized type as it depends on the value it is iterating
upon. Logically, this corresponds to the induction principle on natural numbers.

cc-NatElim
Γ, z :Nat ⊢ P : U Γ ⊢ M : Nat Γ ⊢ N : P [zero/z]

Γ, z :Nat, p :P ⊢ N ′ : P [(suc z)/z]
Γ ⊢ iterP (M,N ,N ′) : P [M/z]

⊢ iterP (zero,N ,N ′) ≡ N

⊢ iterP (suc M,N ,N ′) ≡ N ′[M/z, iterP (M,N ,N ′)/p]

Identity types

The definitional equality ⊢ 𝑀 ≡ 𝑁 is a meta-theoretical notion, which cannot be referred to in
our type theory’s expressions, so, we cannot use it to reason about equality of our programs.
Instead, we introduce propositional equality, a datatype whose inhabitants are proofs of two
terms being equal.

cc-Id
Γ ⊢ A : 𝑈𝑖 Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ IdA(M,N ) : 𝑈𝑖

cc-Refl
Γ ⊢ M : A

Γ ⊢ reflA(M) : IdA(M,M)

It has one constructor, refl, and states that only definitionally equal expressions are propo-
sitionally equal. This kind of construction is called intentional equality. Some variants of
dependent type theory uses extensional equality that allows propositional equality to imply
definitional ones, which makes type checking undecidable.

cc-ElimId
Γ, x :A, y :A, p :IdA(x, y) ⊢ C : 𝑈𝑖

Γ, z :A ⊢ N : C [z/x, z/y, reflA(z)/p]
Γ ⊢ M1 : A Γ ⊢ M2 : A

Γ ⊢ P : IdA(M,N )
Γ ⊢ JC (M1,M2, P,N ) : C [M1/x,M2/y, P/p]

Identity type’s elimination rule is also known as the J-rule, and the usual properties of
equivalence relations like symmetry, transitivity, and the Leibniz rule are all special cases of
it (for more examples, see [27, 39]). It seems scary, but it follows the general principle of
eliminators: for each constructor, it specifies the corresponding computation, and eliminates
to a type that depends on the value to be eliminated. In this case, refl is the only constructor, 𝑃
is a proof of𝑀1 equals to𝑀2, and𝑁 is the computation to be performed on𝑀1 (or equivalently,
𝑀2), as its definitional equality suggests.

⊢ JC (M,M, reflA(M),N ) ≡ N [M/z]
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Inductive families

The general way of defining datatypes like the Σ-type, natural numbers, and identity types
above is inductive families, a dependently typed generalization of algebraic datatypes. Induc-
tive families are conceptually straightforward but technically involved due to their generality,
so, I will not cover the type-theoretic notations (see e.g. [44, 15]) but instead convey the ideas
and show how to define them in Agda.

To specify an inductive type, we must state the types of its parameters and indices, and
which universe the inductive definition lives in. Then, we give it a set of constructors, each
takes a list of arguments and returns an member of the datatype with arbitrary instantiated
indices. For example, the following definition of vectors has a type parameter𝐴 (written before
the semicolon) and a natural number index 𝑛.

data Vec (A : Set0) : (n : Nat) → Set0 where
[] : Vec A 0
Cons : ∀{n} → A → Vec A n → Vec A (suc n)

Set0 is𝑈0 in Agda. The ∀-operator in Cons states that 𝑛 is an implicit argument, which can
be automatically inferred by the compiler (since it is completely determined by the type of the
list we are consing) and saves the user from the syntactic burden of writing it explicitly.

Inductive definitions are subjected two restrictions to ensure consistency of the type the-
ory. First, the universe checking rejects impredicative definitions, such as constructors that take
elements in a larger universe than the universe of the datatype. Second, the positivity check-
ing rejects any reference to the datatype itself at positions other than strictly-positive ones,
i.e. self-reference cannot appear at the left side of an arrow or inside its own type indices.

Inductive families are eliminated with pattern matching functions, and Agda uses a syn-
tactic condition to ensure termination. It only accepts recursive definitions that could be as-
signed with a lexicographical order on its arguments such that the arguments are decreasing
with each recursive call.

2.2 Compilation of dependent types

Fig. 3 gives a simplified and abstract view of current compilers for dependently typed lan-
guages. We start with a surface-level user language that contains syntactic sugar and implicit
arguments. The first step is desugaring, then, an elaboration stage infers the implicit argu-
ments and turns the user language into a core calculus where everything is explicit, much like
the CCω that we saw previously. Once the core-calculus expressions are type-checked, the
compiler erases their types and performs the conventional transformations and optimizations,
generating untyped assembly code and eventually, binary executable.

Bidirectional checking

Type checking is implemented with a bidirectional algorithm that separates the typing rules
into two modes: checking (Γ ⊢ M ⇐ A) and synthesizing (Γ ⊢ M ⇒ A). Checking takes
(Γ, 𝑀,𝐴) as inputs and checks if the expression 𝑀 can be typed with 𝐴. Synthesizing takes
(Γ, 𝑀) as inputs and outputs the inferred type of𝑀 if it is well-typed, and fails otherwise. For
dependent types, the only checking rule is rule cc-Eqiv, and all other rules are synthesizing.
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Figure 3: Structure of existing compilers for dependently typed languages

check-Eqiv
Γ ⊢ M ⇒ A′ ⊢ A ≡ A′

Γ ⊢ M ⇐ A

In other words, to check if 𝑀 has type 𝐴 under Γ, we infer the type of 𝑀 under Γ and see
if the result is equivalent to 𝐴.

syn-Lambda
Γ, x :A ⊢ M ⇒ B

Γ ⊢ 𝜆x :A.M ⇒ Πx :A.B

syn-Apply
Γ ⊢ M ⇒ Πx :A.B Γ ⊢ N ⇐ A

Γ ⊢ M N ⇒ B[N/x]

The inferred type of a lambda abstraction is Πx :A. B, where 𝐴 is already available and 𝐵

is inferred from the function body. To infer the type of an application 𝑀 𝑁 , we first infer the
type of 𝑀 . If it is a function and 𝑁 matches the function’s input type, we conclude that the
inferred type of the application is B[N/x]; in other cases, the algorithm fails as the application
is ill-typed. Types of variables are inferred directly from the context, and the rules for Π-types
and universes are straightforward.

syn-Var
x : A ∈ Γ ⊢ Γ

Γ ⊢ x ⇒ A

syn-Pi
Γ ⊢ A ⇒ 𝑈𝑖 Γ, x :A ⊢ B ⇒ 𝑈 𝑗

Γ ⊢ Πx :A.B ⇒ 𝑈𝑚𝑎𝑥 (𝑖, 𝑗)

syn-Universe
⊢ Γ

Γ ⊢ 𝑈𝑖 ⇒ 𝑈𝑖+1

Before, it was unclear when to use the rule cc-Eqiv in a type derivation tree, as it seems
to fit anywhere. Bidirectional typing rules clarify the order of which rule should be applied
in a derivation, turning the type theory into a practical type checking algorithm. Bidirec-
tional checking for dependent types is developed by Coquand [17], and a survey on various
bidirectional type systems is available at [22].
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Normalization by evaluation

Equivalence test for terms is essential in type checking. Dependent type theories like CCω

are strongly normalizing, so, equivalence checking is simply implemented as a comparison
between the normal forms. It is important to have an efficient normalization algorithm, as
equivalence tests often involve normalizing long and complicated expressions in practice.
The conventional approach of finding 𝛽-redices and doing substitutions to get 𝛽-short normal
forms is not suitable for this task — substitution is a costly operation that drastically slows
normalization down.

Normalization by evaluation (NbE) is the more efficient alternative. Instead of performing
syntactic substitutions, it interprets the code in a semantic domain, where complicated ex-
pressions can be quickly evaluated to semantic values, and then reified back to the syntax as
normal forms. The semantic domain supports the evaluation of open terms (similar to partial
evaluation [20]) because neutral terms, which are irreducible expressions stucked on variables,
are reflected syntactically into the domain.

In practice, our semantic objects are the runtime representations of programs under a run-
time environment that maps the free variables to their reflected semantic values. Normal
forms of the base types are included syntactically. Lambda abstractions are interpreted as clo-
sures, which are the syntax of functions paired with their current runtime environment. To
evaluate the application of a closure on a semantic value, we simply interpret the syntactic
function body in the runtime environment with a new entry that associates the function’s
bound variable to the input value. To evaluate a variable, we just look it up from the runtime
environment, and no substitution is required.

The simply-typed NbE was discovered by Berger and Schwichtenberg [7], and Abel pro-
vides a comprehensive analysis on NbE for dependent types [1]. NbE is deeply connected with
categorical semantics, for example, it amounts to the categorical gluing of presheaves [23, 3].

3 Literature review
In this section, I give a literature review on the most relevant previous work: quantitative type
theory(§3.1) and typed assembly languages(§3.2). I explainwhyQTT is superior to graded type
theory and whole-program analysis for runtime erasure, and why no existing typed assembly
language is suitable for type-preserving compilation with dependent types.

3.1 Quantitative type theory
Quantitative type theory (QTT) combines dependent type theory with linearity [4, 32], which
marks the usage of computational resources such as variables in the context and inputs of
functions. The type judgement of QTT is in the following form (with the context Γ expanded):

𝑥1
𝑞1:𝐴1, ... , 𝑥𝑛

𝑞𝑛: 𝐴𝑛 ⊢ 𝑀 𝜎: 𝐴

Each variable is tagged with a quantity that ranges from 0 (never used), 1 (used once), and
𝜔 (used many times). The addition and multiplication defines how usages can be combined.

+ 0 1 𝜔

0 0 1 𝜔

1 1 𝜔 𝜔

𝜔 𝜔 𝜔 𝜔

· 0 1 𝜔

0 0 0 0
1 0 1 𝜔

𝜔 0 𝜔 𝜔
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Addition and multiplication extends to contexts. A multiplication 𝑞Γ is multiplying the
quantity of each variable in Γ by 𝑞. So, 0Γ1 = 0Γ2 implies that Γ1 and Γ2 contain the same
variable-type pairs, with possibly different usage annotations. Addition for contexts is point-
wise, and Γ1 + Γ2 is only well-defined when 0Γ1 = 0Γ2.

The type judgement is tagged with 𝜎 ∈ {0, 1}. When 𝜎 = 0, we construct a term 𝑀 in the
erased fragment which is runtime irrelevant; when 𝜎 = 1, 𝑀 is in the present fragment which
will be used at runtime (no matter howmany times). We get the typing rules of QTT by adding
quantity annotations to the rules of CCω with a principle: zero needs nothing. If Γ ⊢ M

0: A,
then all variables in the context must have quantities 0 (i.e. Γ = 0Γ). Since types are always
computationally irrelevant, they are judged with 𝜎 = 0 and the contexts are multiplied by zero
to enforce the zero-needs-nothing property.

qtt-Pi
0Γ ⊢ A 0: 𝑈𝑖 0Γ, x0:A ⊢ B 0: 𝑈 𝑗

0Γ ⊢ Πx
𝑞:A.B 0: 𝑈𝑚𝑎𝑥 (𝑖, 𝑗)

qtt-Universe
⊢ 0Γ

0Γ ⊢ 𝑈𝑖
0: 𝑈𝑖+1

As you can see, the dependent function type associates a quantity 𝑞 to its bound variable
𝑥 that records how many times the input will be used. Rule qtt-Lambda is judged with the
premise that the bound variable 𝑥 is used for 𝑞𝜎 times – we multiply 𝑞 by 𝜎 to comply with the
zero-needs-nothing principle (the usage of 𝑥 is 0 when 𝜎 = 0 and 𝑞 when 𝜎 = 1). Intuitively,
if a term 𝑀 uses an variable for𝑚 times to construct a function of type Πx𝑞:A.B, and another
term 𝑁 (of type 𝐴) uses the same variable for 𝑛 times, then, the total usage of that variable in
the application𝑀 𝑁 is𝑚 +𝑞𝑛 times. So, the application rule is judged under Γ1 +𝑞Γ2, correctly
summing the resource usage in the contexts. Its constraint in the premises, again, is enforcing
the zero-needs-nothing property by stating that if the function’s argument is runtime irrele-
vant (𝜎′ = 0), then either the whole application is irrelevant (𝜎 = 0) or the function never uses
its input (𝑞 = 0).

qtt-Lambda
Γ, x

𝑞𝜎: A ⊢ M 𝜎: B

Γ ⊢ 𝜆x𝑞:A.M 𝜎: Πx𝑞:A.B

qtt-Apply
0Γ1 = 0Γ2 𝜎′ = 0 ⇔ (𝑞 = 0 ∨ 𝜎 = 0)

Γ1 ⊢ M
𝜎: Πx𝑞:A.B Γ2 ⊢ N

𝜎 ′
: A

Γ1 + 𝑞Γ2 ⊢ M N
𝜎: B[N/x]

The variable rule is straightforward: either 𝑥 is used once in the present fragment, or it
is used zero times in the erased fragment. In the conversion rule, we enforce that 𝐵 is con-
structed without resources, and everything else remains the same as before 3.

qtt-Var
⊢ 0Γ, x𝜎:A, 0Γ′

0Γ, x𝜎:A, 0Γ′ ⊢ x 𝜎: A

qtt-Eqiv
Γ ⊢ M 𝜎: A 0Γ ⊢ B 0: U ⊢ A ≡ B

Γ ⊢ M 𝜎: B

In general, we can pick quantities from any semiring (𝑄, 0, 1, +, ·) that is positive and has
the zero-product property. A semiring is a set 𝑄 with binary operators (+) and (·), and two
elements 0 and 1 such that (𝑄, 0, +) is a commutative monoid, (𝑄, 1, ·) is a monoid, (+) and (·)
distribute, and 0 · 𝑞 = 0 = 𝑞 · 0 for all 𝑞 ∈ 𝑄 . In a positive semiring, 𝑞1 + 𝑞2 = 0 implies 𝑞1 = 0

3The premise should be 0Γ ⊢ 𝐴 ≡ 𝐵
0: 𝑈 if we are using typed equality.
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and 𝑞2 = 0; the zero-product property means that 𝑞1 · 𝑞2 = 0 implies 𝑞1 = 0 or 𝑞2 = 0. These
properties are essential for substitutions to be well-typed.

Among other approaches to runtime erasure, QTT is themost suitable one for type-preserving
compilation. Compared with erasure based on whole-program analysis [13, 43] which fails to
infer erasable function arguments in some cases, QTT allows users to mark precisely which
argument should be erased, and has better type-checking performance [12]. It will not add
syntactic burden to the users, because most of the quantity annotations can be automatically
inferred, for example, the implicit arguments have usage 0 (since they only appear in types).
The compiler can easily identify erasable function closures in QTT – the erased functions are
judged with 𝜎 = 0 and the runtime relevant functions are judged with 𝜎 = 1. Graded modal
type theory, a generalized version of QTT, discards the “erased” and “present” fragments and
replaces them with a modal type □𝑞𝐴 for runtime usage of expressions. 𝑀 : □𝑞𝐴 means that
𝑀 is a piece of code that will be used 𝑞 times during execution (𝑞 comes from an algebra of
quantities, such as a semiring). 4 Graded modal type theory supports more definitional equal-
ity than QTT [14, 34], however, it makes erasing function closures difficult, as it is no longer
apparent whether a lambda abstraction of type Πx𝑞:A.B is used at the runtime or not.

3.2 Typed assembly languages

Typed assembly languageswere inspired by TIL, a type-directed optimizing compiler forML [42].
TIL was based on a key observation: the more expressive a programming language’s type sys-
tem is, the more useful these types are to compilers. TIL used type information to generate
efficient specialized code for different instances of a polymorphic function, speed up garbage
collection, and perform conventional optimizations reliably. It transforms the source program
through a chain of typed intermediate languages, preserving and utilizing the types along the
way, and eventually discards the types during target code generation, since there was no place
for them in the usual untyped assembly.

TAL

The idea of having a typed assembly language (TAL) [36] follows naturally from TIL, and
completes a compiler that preserves the type information from source to target. Here is a TAL
program that takes an input and returns a pair of its copies.
copy : code['a]{r1 : 'a, r2 : {r1 : <'a , 'a>}}.
malloc r3, <r1 , r1>
mov r1 r3
jmp r2

Without the type annotation, it is the same as an assembly language for a register machine
with a small RISC-style instructions set. Instruction malloc creates a pair of copies of r1’s
content on the heap and stores its address in r3. Then, this address is moved to r1 and the
program jumps to the return address in r2. Its type specifies that copy is a code block which
is polymorphic over some type 𝛼 , and it requires r1 to contain a value of type 𝛼 and r2 to
contain the address to a block that expects a pair of 𝛼-typed values in r1. The type checker
ensures that the pre-condition is always satisfied when the control flow transfers to the start
of a block, and there is no ill-typed operations (like adding an integer to an abstract type).

4In [34], the modal type is given as a part of the syntax; in [14], □𝑞𝐴 is given as an encoding by the dependent
pair Σ𝑥𝑞:𝐴.𝑈𝑛𝑖𝑡 .
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TAL code is generated from System F expressions with a series of type-preserving trans-
formations. The compiler first uses type-preserving CPS transformation and closure conver-
sion to expose control flows and function closures, then turns tuple constructors into explicit
allocations, which makes the resulting code very similar to TAL, and finishes with a straight-
forward code generation. Type signatures are removed before binary-code generation and
execution. Typed closure conversion produces closure objects in existential types that can be
packed or unpacked, which are all supported in TAL. The generated compiler output could
be further optimized, for example, removing dead code, unnecessary closures, and redundant
move instructions.

In practice, Morisset et al. developed TALx86, a strongly typed fragment of the the In-
tel IA32 assembly language [19]. It uses a stack-based computational model with returning
functions, but supports CPS-based compilation by providing mechanisms to perform direct
jumps.

DTAL

Xi and Harper extended TAL with a limited form of dependent types, giving a dependently
typed assembly language (DTAL) [48]. It provides two dependent datatypes, both indexed over
integers: int(x) whose only inhabitant is the integer x, and polymorphic arrays 'a array(x)
with lengths of x. A code block’s type signature can universally quantify over these integer
indices and add constraints to them. The constraints are given in a special syntax of arith-
metic and propositional logic, separating the assembly code and the reasoning, preventing
ambiguous scenarios like “a type that depends on the content of a mutable register”.

The DTAL code below specifies a block that takes an 𝛼-array of length m in r1, an integer
n in r2, and a value of type 𝛼 in r3 (for all types 𝛼 and integers (m, n)). It further constraints
that m >= 0, n >= 0, and n < m. The code block uses load to copy the value in r3 into the
array’s position n.
arraySet : ('a){m : int | m >= 0 , n : int | n >= 0 && n < m}

[r1 : 'a array(m), r2 : int(n), r3 : 'a]
load r1(r2), r3
halt

As in TAL, the type checker ensures that all registers contain values of the specified types
when control enters the block and all operations are well-typed. In addition, it uses an SMT
solver to check if all constraints are satisfied before the control enters a code block. Inside
these blocks, it assumes the constraints in the pre-conditions holds, and continuously updates
them while sequentially walking through each instruction, checking for out-of-bound array
access. In arraySet, the constraints before loading comes directly from the pre-conditions,
which implies that m and n are both greater than 0 and n < m, so, the loading is safe. If we put
add r2, r2, 1 before load, then, n < m is no longer true in the updated constraints after this
instruction, which makes the loading possibly unsafe, and the code is rejected.

Like TAL, type signatures of DTAL code blocks are erased before binary-code generation
and execution. The logical values m and n plays no role in computation (since they can only
appear in the type signature), so, erasurewill not change program behavior andwe do not need
to store the logical values at runtime. Since well-typed DTAL code promises no out-of-bound
access, runtime array bound checks can be safely eliminated as an optimization.

DTAL is suitable for compiling early dependently typed languages like Dependent ML and
Xanadu that features a limited form of dependent types similar to the types in DTAL. Its design
choice of separating the reasoning logic and the assembly language is worth learning from,
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despite its reliance on an external SMT solver and the lack of the full dependent type theory.

Singleton

Winwood presented a design of a general purpose dependently typed assembly language, Sin-
gleton [47]. Its style is similar to TAL, but it supports full dependent types, inductive families,
and a case branch instruction for pattern matching. It features the use of singleton types
𝑠𝑔𝑙 (𝑎 : 𝐴) whose only inhabitant is the value 𝑎 of type 𝐴 5 , like the generalized version of
int(x) as we saw in DTAL. Upon the assembly instructions, Singleton has an assertion logic
based on the Calculus of Inductive Constructions for specifying types of registers and reason-
ing about their contents. Here is the type of a code block that takes the head of a list (taken
from [47]).
head: ∀(A : Set)(xs : list A).

{a1 : sgl (xs : list A),
ra : ∀(x : A)(xs' : list A)(pf : xs = Cons x xs').

{t1 : sgl(x : A)}}

The code block takes two logical arguments 𝐴 and 𝑥𝑠 , which are values only relevant to
type checking and can be erased at runtime. These arguments are not automatically inferred
– they need to be provided to the code block in the assembly. The head block expects a1
to contain exactly the list 𝑥𝑠 (as specified by the singleton type), and the return address ra to
point to a code block which requires three logical values x, xs', and pf such that pf proves that
xs = Cons x xs' and x is stored in t1. Singleton’s type system guarantees that if head returns
from ra, then it correctly implements a head function. However, this correctness guarantee
is partial since head could throw an exception (when xs is empty, for example), return from
another address or loop forever.

Unfortunately, Singleton is incompatible with the type-preserving compiler transforma-
tions for dependent types, which are usually different from the non-dependent versions. For
example, Singleton has existential types to accommodate function closures, yet closure con-
version with existential is not type-preserving in dependent settings [10]. There is also no way
for erasing computationally irrelevant type indices, so, a Singleton implementation of vectors
still has to pay extra space and time to store and compute their lengths.

Discussion

The following table summarizes the features of the typed assembly languages reviewed in this
section. We can see that there does not exist a suitable assembly language which supports full
dependent types, allows precise erasure of runtime irrelevant computations and type indices,
and is compatible with the dependently typed transformations. Therefore, the development
toward type-preserving compilers for dependent types is stuck, and it could only proceed
when a typed assembly language with these properties becomes available.

Language Fully dependent types Erasure Type-preserving compilation
TAL % " "

DTAL % " "

Singleton " % %

5The syntax might be confusing: 𝑎 and 𝐴 are really type indices here and 𝑠𝑔𝑙 is not a binding operator!
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4 Progress report

In this section, I describe the initial work done toward the thesis. It includes the defunction-
alization transformation for dependent types (§4.1), a dependently typed assembly language
derived from the defunctionalized intermediate representation (§4.2), and defunctionalization
for quantitative type theory (§4.3).

In parallel, I completed a mechanized proof of the correctness of normalization by heredi-
tary substitution for STLC in Agda (§4.4). Its generalization in contextual modal type theory
is related to the notion of my defunctionalized labels, and the subject is worth studying in its
own right.

4.1 Defunctionalization with dependent types

The defunctionalization translation turns higher-order programs into first-order programs.
Previous work on defunctionalization in typed settings has examined a variety of languages,
from simply-typed [38] and monomorphizable [6] to fully polymorphic [41], but not depen-
dently typed ones. This section introduces the traditional typed defunctionalization for poly-
morphic languages (as in [41]), explains why such approach fails to generalize to dependent
types, and provides my solution – a dependently typed calculus for defunctionalized interme-
diate representations. The contents presented here is adapted from my published paper on
PLDI (see [28]), co-authored with my supervisor, and part of the work on DCC was completed
before the start of my PhD.

Defunctionalization with polymorphic types

Defunctionalization for polymorphic languages replaces the function arrow _→ _with a first-
order data type _{ _. Here is an example that defunctionalizes the polymorphic compose
function which contains three abstractions, here labeled F1, F2, and F3.
compose :: (b → c) → (a → b) → (a → c)
compose = 𝜆f → 𝜆g → 𝜆x → f (g x)

F1
F2

F3

Defunctionalizing compose produces a data type _{ _ with one constructor for each ab-
straction, and the constructor’s arguments correspond to the free variables in the abstraction.
F2 has one argument of type b { c, corresponding to f in F2 above, and F3 has two arguments,
corresponding to f and g in F3.

data ({ ) a b where
F1 :: (b { c) { (a { b) { (a { c)
F2 :: (b { c) → (a { b) { (a { c)
F3 :: (b { c) → (a { b) → (a { c)

Defunctionalization also produces an operator $ that maps the constructors of _{ _ to the
bodies of the corresponding abstractions:

($) :: (a { b) → a → b
F1 $ f = F2 f
F2 f $ g = F3 f g
F3 f g $ x = f $ (g $ x)

Here $ maps F1 and the argument 𝑥 to F2 x, since the body of the abstraction F1 is F2, with x
free. Similarly, it maps F3 to f $ (g $ x) because the body of F3 is f (g x).
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Finally, defunctionalization replaces→ with { and F1 with F1 in compose itself, and the
program contains no higher order function anymore.

compose_ :: (b { c) { (a { b) { (a { c)
compose_ = F1

In general, defunctionalization replaces each abstraction 𝜆𝑥 .𝑀𝑖 in the source programwith
a constructor application 𝐶𝑖 𝑦 where 𝐶𝑖 is a constructor of _{ _ and 𝑦 are the free variables
of the abstraction, and replaces each application 𝑓 𝑥 with 𝑓 $ 𝑥 , where the infix operator
$ maps 𝐶𝑖 back to 𝑀𝑖 . The data type _{ _ produced by defunctionalization is a generalized
algebraic data type (GADT), in which the return type of each constructor can have a distinct
instantiation of the type parameters, and constructor types can involve type variables (such
as b in the type of F3) that do not appear in return types.

Problems of using inductive families

Polymorphic functions abstract over types and defunctionalize to GADTs indexed by types.
Despite the analogy, dependent functions which abstract over expressions cannot defunction-
alize to inductive families indexed by expressions, due to restrictions imposed on inductive
families to ensure consistency (see §2.1).

data _{_ : Set → Set → Set where
F1 : (B{ C){ (A{ B){ (A{ C)
F2 : (B{ C) → (A{ B){ (A{ C)
F3 : (B{ C) → (A{ B) → (A{ C)

_$_ : ∀ {A B} → (A{ B) → A → B
F1 $ f = F2 f
F2 f $ g = F3 f g
F3 f g $ x = f $ (g $ x)

For example, we can easily write the defunctionalized compose above in Agda with induc-
tive families, but it is rejected since the constructor F1 takes an argument of type B{ C that
inhabits the universe Set1 (which is larger than its universe Set), and in the type of F1, { is
indexed by { itself, so the definition fails positivity checking. In more complicated scenar-
ios where dependent functions are involved, the definition of $ might fail Agda’s termination
checking.

The fact that Agda rejects the inductive families generated by defunctionalization suggests
that inductive families are ill-suited to the task. For example, the universe restriction that re-
jects the constructors of{ does not apply to the closures that correspond to those construc-
tors in the source program: there is nothing requiring a free variable in an abstraction body
to inhabit a smaller universe than the function itself. The additional restriction arises from
an expressivity mismatch: the universe restriction is only needed when inductive families are
not used in a closure-like fashion — e.g. when constructor arguments are extracted.

A defunctionalized Calculus of Constructions

Instead of using inductive families, I choose to follow the direction of abstract transforma-
tion, which studies transformations into a specialized target language with new constructs for
defunctionalized datatypes. Transforming into these constructs captures the essence of the
translation, while avoiding the unnecessary restrictions imposed by more concrete settings.
A similar approach is used in the study of abstract closure conversion [33, 10].

The target language I define is the Defunctionalized Calculus of Constructions (DCC), sim-
ilar to the CCω introduced in Section 2, but with a new construct for defunctionalized labels
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𝔇 ::= 𝔏3({f : B → C, g : A → B}, x : A ↦→ f @ (g@ x) : C),
𝔏2({f : B → C}, g : (A → B) ↦→ 𝔏3{f, g} : A → C),
𝔏1({}, f : (B → C) ↦→ 𝔏2{f} : (A → B) → A → C)

compose ::= 𝔏1{}

Figure 4: Defunctionalized simply-typed composition

in place of lambda abstractions. Fig. 4 shows the result of defunctionalizing the simply-typed
compose function

𝜆1𝑓 : (𝐵 → 𝐶). 𝜆2𝑔 : (𝐴 → 𝐵). 𝜆3𝑥 :𝐴. 𝑓 (𝑔 𝑥)

to DCC 6, which looks and behaves like the conventional defunctionalization presented previ-
ously. In our translation into DCC, each abstraction 𝜆𝑥 .𝑀𝑖 is replaced with a label expression
𝔏i{y} where 𝔏i is the label’s identifier and y are the abstraction’s free variables. The function
body 𝑀𝑖 is stored in a separate label context 𝔇 indexed by the label identifier, along with its
typing information.

In Fig. 4, the label context 𝔇 has three entries, one for each abstraction in the original
compose function. Each entry corresponds to one case of the $ function in the conventional
defunctionalization. For example, 𝔏3 arises from the translation of 𝜆𝑥 : 𝐴. 𝑓 (𝑔 𝑥), and corre-
sponds to the F3 case in the definition of $: it has two free variables f : B → C and g : A → B,
a bound variable x, and a body f @ (g@ x). As we shall see, a label application𝔏3{f, g}@N re-
duces to f @ (g@N), just as the application (F3 f g) $ x reduces to the corresponding right
hand side f $ (g $ x).

Syntax and meta-theory of DCC

The syntax of DCC shown below is given in a different colour and font for distinction. Its
expressions are similar to that of CCω, except that DCC contains first-class function labels
𝔏{M} instead of lambda abstractions.

Universes U ::= Ui

Expressions A,B, L,M,N ::= x | U | Πx:A.B | L@M | 𝔏{M}
Type contexts Γ ::= · | Γ, x:A
Label contexts 𝔇 ::= · | 𝔇,𝔏({x:A} , x:A ↦→ M : B)
DCC contexts 𝔇;Γ

There are two varieties of context in DCC. As in CC, type contexts Γ associate variables
x with types A. Label definition contexts 𝔇 pair label names with their associated data:
𝔏({x:A} , x:A ↦→ M : B). Here x:A records the type of the (possibly empty) telescope of
free variables that the label takes, (x : A) → B specifies the label type, and M is the expression
to which the label reduces when applied to an argument. Note that types in a type context Γ
may refer to labels 𝔏1,𝔏2, · · · in the label context𝔇, but not vice versa.

The type judgement is in the form of𝔇; Γ ⊢ M : A andwell-formedness of the dual contexts
are noted as ⊢ 𝔇; Γ. Rules for variables, universes, Π-types, applications, and conversion are
identical to their counterpart rules in CC, like the variable, Π-types, universe, and conversion
rules below.

6Assuming that 𝐴, 𝐵, and 𝐶 are fixed base types here, and each lambda abstraction is tagged with a unique
natural number identifier.
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dcc-Var
x : A ∈ Γ ⊢ 𝔇; Γ

𝔇; Γ ⊢ x : A

dcc-Universe
⊢ 𝔇; Γ

𝔇; Γ ⊢ Ui : Ui+1

dcc-Pi
𝔇; Γ ⊢ A : Ui

𝔇; Γ, x:A ⊢ B : Uj

𝔇; Γ ⊢ Πx:A.B : Umax(i,j)

dcc-Eqiv
𝔇; Γ ⊢ M : A
𝔇; Γ ⊢ B : Ui
𝔇 ⊢ A ≡ B

𝔇; Γ ⊢ M : B

We focus on the rule for labels. A label term 𝔏{M} is well-typed in 𝔇;Γ if the following
conditions are satisfied.

1. The context𝔇;Γ is well-formed.

2. 𝔏({x:A} , x:A ↦→ M : B) is present in𝔇.

3. The length of the two lists M and x:A are equal.

4. All expressions in M are well-typed, and their types match the specified types of free
variables A.

Specifically, condition (4) means:

𝔇; Γ ⊢ M1 : A1,

𝔇; Γ ⊢ M2 : A2 [M1/x1],
· · · ,
𝔇;Γ ⊢ Mn :An [M1/x1, · · · ,Mn−1/Mn−1] .

Each Ai+1 depends on x1, · · · , xi, so M1, · · · ,Mi need to be substituted in Ai+1 in the type judge-
ment for Mi+1. The type of 𝔏{M} is Πx:A[M/x] .B[M/x].

Note that values of free variables M are substituted in Πx:A.B, the specified type of the
label. We use [M/x] as a syntactic sugar of [M1/x1, · · · , Mn/xn], and conditions (3) and (4) are
abbreviated to𝔇; Γ ⊢ M : A as a convention. Therefore, we have the following rules for labels
and applications:

dcc-Label
𝔇; Γ ⊢ M : A

𝔏({x:A} , x:A ↦→ M : B) ∈ 𝔇

𝔇; Γ ⊢ 𝔏{M} : Πx:A[M/x] .B[M/x]

dcc-Apply
𝔇; Γ ⊢ M : Πx:A.B

𝔇; Γ ⊢ N : A

𝔇; Γ ⊢ M@N : B[N/x]

The dual context 𝔇;Γ is well-formed when all types in Γ are well-typed (similar to CCω),
and every label is associatedwith awell-typed data. In otherwords, if we have𝔏({x:A} , x:A ↦→
M : B), M should have the type B as specified in the context formed by the previous label con-
text (it cannot call itself) and the free variables in M (namely𝔇; x:A, x:A).

dcc-wf-Label
𝔇; x:A, x:A ⊢ M : B

⊢ 𝔇,𝔏({x:A} , x:A ↦→ M : B); ·
When a label term 𝔏{M} is applied to an argument N, we can 𝛽-reduce it by finding the

label’s body L in the label context, then substitute the values M for its free variables x and the
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argument N for its bound variable x, as described by the reduction relation𝔇 ⊢ M ⊲ N.

dcc-red-Beta
𝔏({x:A} , x:A ↦→ L : B) ∈ 𝔇

𝔇 ⊢ 𝔏{M}@N ⊲ L[M/x,N/x]

As a dependent type theory, DCC is type-safe and consistent—no terms are non-terminating
and no paradox can be derived under the empty typing context.

Theorem 4.1 (Type safety) If𝔇; · ⊢ M : A, then𝔇 ⊢ M ⊲∗ v for some irreducible value v.

Theorem 4.2 (Consistency) There is no pair of a label context𝔇 and DCC term M such that
𝔇; · ⊢ M : ΠA:U.A.

Defunctionalization transformation

The transformation from the source language into DCC needs two processes: a term transfor-
mation (defined with Γ ⊢ M : A { M) that produces a DCC term from the input term, and
a function extraction (defined with Γ ⊢ M : A {𝑑 𝔇) that gives a DCC label context which
contains all the function definitions appeared in the input. In other words, the transformation
takes the whole derivation tree of a well-typed source language term as input. I write [[𝑀]]
for the term transformation and [[𝑀]]𝑑 for the function extraction when Γ and 𝐴 are obvious.

The term transformation turns lambda abstractions into label terms, using 𝐹𝑉 to compute
the list of free variables. Note that 𝐹𝑉 is not as simple as finding all the unbound variables in
the function body, since the types of these unbound variables might contain other variables,
and so on. Instead, 𝐹𝑉 recursively finds all the variables from the context required to correct
type the function. Applications are transformed structurally, and the same applies to variables
and types (rules omitted).

t-Lambda
𝐹𝑉 (𝜆𝑖𝑥 :A.M) = x :A

Γ ⊢ x : A { x

Γ ⊢ 𝜆𝑖𝑥 :A.M : Πx :A.B { 𝔏i{x}

t-Apply
Γ ⊢ L : Πx :A.B { L
Γ ⊢ M : A { M

Γ ⊢ L M : B[M/x] { L@M

We now look at the function extraction process. Rule D-Lambda seems complicated, but
it states a simple fact: to extract functions from a lambda abstraction, we work out the trans-
formed terms required to assemble the label definition for this function, and append it after
the functions we extracted from𝑀 and the argument type 𝐴.

d-Lambda
Γ ⊢ A : U {𝑑 𝔇A Γ, x :A ⊢ M : B {𝑑 𝔇M

𝐹𝑉 (𝜆𝑖𝑥 :A.M) = x :A Γ ⊢ A : U { A
Γ, x :A ⊢ M : B { M Γ ⊢ Πx :A.B : U { Πx:A.B

Γ ⊢ 𝜆𝑖𝑥 :A.M : Πx :A.B {𝑑 𝔇A ∪𝔇M,𝔏i({x:A} , x:A ↦→ M : B)

Other rules simply performs extraction structurally. The function extraction process is de-
signed to have a property: if Γ ⊢ M : A, then the function definitions extracted from𝑀 always
include the definitions extracted from its type𝐴, which is required to prove type preservation.
Note that this property is non-trivial when 𝑀 is an application. Since dependent types allow
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any type-level computation, the result type B[N/x] of some application M N could contain a
function 7 that is not found in either𝑀 , 𝑁 , or the context! So, rule d-Apply should also include
functions extracted from the result type of the application.

d-Apply
Γ ⊢ M : Πx :A.B {𝑑 𝔇1

Γ ⊢ N : A {𝑑 𝔇2
Γ ⊢ B[N/x] : U {𝑑 𝔇3

Γ ⊢ M N : B[N/x] {𝑑 𝔇1 ∪𝔇2 ∪𝔇3

I proved that the transformation is type-preserving and correct – well typed source ex-
pressions are translated into well-typed target expressions, and the transformation preserves
the reduction sequences.

Theorem 4.3 (Correctness) For all ground types 𝐴 and values 𝑣 of type 𝐴,

· ⊢ M : A ∧M ⊲∗ v =⇒ 𝔇Γ ∪𝔇M ⊢ M ⊲∗ v′ where v′ ≡ v.

Theorem 4.4 (Type preservation) For all well-typed programs M ,

Γ ⊢ M : A =⇒ 𝔇Γ ∪𝔇M ; Γ ⊢ M : A,

where (𝔇Γ,𝔇M) = ( [[Γ]]𝑑 , [[M]]𝑑) and (Γ,M,A) = ( [[Γ]], [[M]], [[A]]).

4.2 A dependently typed assembly language

As analyzed in (§3.2), all dependently typed assembly languages in previous work are not
suitable for type-preserving compilation. DTAL [48] does not support fully dependent types
and Singleton [47] is incompatible with type-preserving transformations. In this section, I
present the design of a dependently typed assembly language that learns from the strengths
of its predecessors and overcomes their weakness, with the following design principles:

• TAL-like syntax. Following the design of TAL (discussed in [36, 35]), the assembly
language is structured in code blocks with a main block where the program starts. Each
block is a sequence of RISC-style instructions with a type signature that specifies the
preconditions before execution, for example, the types of values stored in registers or
on the stack.

• Separation of logic and assembly. The assembly language uses dependent types to
specify the properties of code blocks with logical statements. Following DTAL, the logi-
cal language is separated from the assembly language, to eliminate ambiguous situations
like “types depending on mutable registers”. As in Singleton, the logic is given by a con-
sistent dependent type theory to ensure soundness.

• Stack machine. The operational model of the assembly language is a stack machine,
like TALx86 [19], the extended and more practical version of TAL. It makes code gener-
ation to stack-based low level languages like JVM andWasm easier, and many hardware
mechanisms expect programs that work with stacks.

7Section 3.3.2 of the paper gives an example.

19



Instructions 𝐼 ::= pop | push 𝑤 | clo 𝑛 𝑙𝑎𝑏 | jmp 𝑙𝑎𝑏 | app 𝑤

Instruction sequences 𝐼𝑠 ::= ret | halt | 𝐼 ; 𝐼𝑠

Words 𝑤 ::= s(𝑛) | constants

Figure 5: Excerpt syntax of the assembly code where 𝑙𝑎𝑏 are code labels and 𝑛 are natural
numbers.

• Compatible with transformations. As a target language for type-preserving compi-
lations, it should be able to generate from the intermediate representations of previous
type-preserving transformations for dependent types. In particular, it should support
direct jumps to fit with CPS transformation and tail calls, and be capable of representing
the function labels from defunctionalization.

Defunctionalized Calculus of Constructions (DCC), as introduced in (§4.1), is a promising
candidate for the logic of a dependently typed assembly – it is a consistent type theory that
captures defunctionalized intermediate representations. Fig. 5 shows an excerpt of the syntax
of instructions and here is an example code block in this typed assembly based on DCC.

com : [A : U0, B : U0, C : U0]
{g : {x : A, y : B} → C, f : {x : A} → B, x : A} →
(g{x, f{x}} : C).

1: push s(0);
2: app s(2);
3: app s(3);
4: ret

The type of com states that it is invoked with three local variables A, B, and C (which are
types). Then, it specifies the types of the top three items on the stack (referred to as g, f, and
x with x at the top), and claims that the instructions will compute g x (f x) and place it on
the top of the stack before com returns. As you can see, the type signature of com resembles
the syntax of a DCC label 𝔏({x:A} , x:A ↦→ M : B) – the local variables are like the free vari-
ables, the stack (seen as a big dependent pair) is like the function argument, and the resulting
computation is like the function body. Here, s(i) evaluates to the i-th value from the top of
the stack. Values f and g are closures (a pair of a code label and a list of assigned values to
its local variables) similar to 𝔏{M}, that can be created with the clo instruction and invoked
with app. Fig. 6 shows how com is executed. The stack machine uses call frames to record the
local variables, location of the last frame, and the instruction to return to. It supports direct
jumps and tail calls with jmp that transfers control directly to code blocks which require no
local variables.

The type checker for our new assembly language has two tasks: checking if every code
block’s signature is well-typed, and if their instruction sequence correctly implements the com-
putation as its type specified. For com, it checks if g x (f x) has type C, and if the instructions
will compute g x (f x) and place it on the top of the stack.

Type checking of the signatures uses exactly the same rules as type checking in DCC.
To check if an instruction sequence 𝐼𝑠 computes a value 𝑣 of type 𝐴, we need the context
of all the type signatures (Ψ), the local variables (Δ), and the stack (Σ), with the judgement
Ψ;Δ; Σ ⊢ 𝐼𝑠 : (𝑣 : 𝐴). The type checker evaluates the sequence abstractly (like what we did
in Fig. 6) and checks if the final result is equivalent to the one in specification. For example,
to check if pop; 𝐼𝑠 computes 𝑣 , we pop the top item from the stack and check if 𝐼𝑠 computes 𝑣 .
Rules for other instructions follow the same spirit.
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Figure 6: Execution of com and components on the stack.

I have prototyped a type checker and an interpreter for this assembly language. The type
checker rejects the following code that creates an infinite loop. Although the assembly code
implements (loop[]){}, the type signature is ill-scoped – a label cannot be mentioned in its
own body (see rule dcc-wf-Label). I conjecture and plan to prove that the typed assembly
language is type safe and well-typed programs always terminate.

loop : []{} → ((loop[]){} : U0).
clo 0 loop
app s0
ret

4.3 Defunctionalization with quantitative type theory

Defunctionalization with dependent types is achieved with DCC, a dependent type theory
specialized for representing the defunctionalized function labels (§4.1), that gives rise to a
dependently typed assembly language (§4.2). I believe that this approach can be combined
with quantitative types to add precise runtime erasure annotations to the typed assembly.
This section outlines the first step, extending defunctionalization to quantitative type theory
(QTT).

Defunctionalized Quantitative Type Theory

DCC, the target language of dependently typed defunctionalization, can be extended with
quantitative types with a few straightforward modifications. I call the new target language
Defunctionalized Quantitative Type Theory (DQTT), with its syntax presented below.
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Universes U ::= Ui

Expressions A,B, L,M,N ::= x | U | Πx
q
:A.B | L@M | 𝔏{M}

Type contexts Γ ::= · | Γ, x
q
: A

Label contexts 𝔇 ::= · | 𝔇,𝔏({x q
: A} , xq

:A ↦→ M
𝜎:B)

DCC contexts 𝔇;Γ

As you can see, quantity annotations appear on variables in the context, argument of func-
tion types, and inside defunctionalized labels. As in QTT, each variable’s associated quantity
represents how many times it will be used during execution, where 𝑞 are elements from a
suitable semiring. Each piece of code in the label’s body is marked with 𝜎 which is either 0
(runtime irrelevant) or 1 (runtime relevant) like term judgements.

Typing rules incorporates quantities in the usual QTT manner (see §3.1), which enforces
the zero-needs-nothing property and makes sure that type needs nothing. Most rules look
exactly the same as before, as shown below.

dqtt-Var
⊢ 𝔇; 0Γ1, x

𝜎: A, 0Γ2

𝔇; 0Γ1, x
𝜎: A, 0Γ2 ⊢ x

𝜎: A

dqtt-Universe
⊢ 𝔇; Γ

𝔇; Γ ⊢ Ui
0: Ui+1

dqtt-Pi
𝔇; 0Γ ⊢ A

0: Ui

𝔇; 0Γ, x
q
: A ⊢ B

0: Uj

𝔇; 0Γ ⊢ Πx
q
:A.B 0: Umax(i,j)

The Label rule is more involved, but it is easy to understand as an iterated version of the
application rule with arguments M1, ...,Mn. All of Mi are well-typed under some type assign-
ment with possibly different quantities for variables, so, the total usage in the final context is
the sum of usages in each context times their designated usages qi. As for the quantity for
codes, it follows the same constraints as in rule dqtt-Apply: if an argument is computation-
ally irrelevant, then either we are constructing an irrelevant expression, or the label will use
that variable in an irrelevant way.

dqtt-Apply
𝔇; Γ1 ⊢ M

𝜎: Πx
q
:A.B

𝔇; Γ2 ⊢ N
𝜎 ′
: A

0Γ1 = 0Γ2
𝜎′ = 0 ⇔ (q = 0 ∨ 𝜎 = 0)

𝔇; Γ1 + qΓ2 ⊢ M@N
𝜎: B[N/x]

dqtt-Label

𝔏({x q
: A} , xq

:A ↦→ M
𝜎:B) ∈ 𝔇

𝔇; Γi ⊢ M
q
: A

∀i. (0Γ1 = 0Γi)
∀i. (qi = 0 ⇔ (q = 0 ∨ 𝜎 = 0))

𝔇;Σi qiΓi ⊢ 𝔏{M} 𝜎: Πx
q
:A.B

Defunctionalization transformation

Now we look at the defunctionalization transformation, which includes the term transforma-
tion Γ ⊢ M

l: A { M and function extraction Γ ⊢ M
l: A {𝑑 𝔇. The term transformation has

to respect the type-needs-nothing principle when it is finding the free variables required to
type the function body in the Lambda rule. In other words, FV finds all the variables required
to type the function but the quantity for any free variable that appears only in the types is 0.
Other rules are essentially the same as before, such as the rule dqtt-t-Apply shown below.
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dqtt-t-Lambda

𝐹𝑉 (𝜆𝑖𝑥𝑞:A.M) = x
𝑞: A

Γ ⊢ x 𝑞: A { x

Γ ⊢ 𝜆𝑖𝑥𝑞:A.M 𝜎: Πx𝑞:A.B { 𝔏i{x}

dqtt-t-Apply
Γ1 ⊢ M

𝜎: Πx𝑞:A.B { M

Γ2 ⊢ N
𝜎 ′
: A { N

0Γ1 = 0Γ2 𝜎′ = 0 ⇔ (𝑞 = 0 ∨ 𝜎 = 0)

Γ ⊢ M N
𝜎: B[N/x] { M@N

The function extraction follows easily, as long as we remember to get the lambdas from
types in the erased mode. For example,𝔇A in rule dqtt-d-Lambda is extracted from 0Γ ⊢ A 0:
U .

dqtt-d-Lambda
0Γ ⊢ A 0: U {𝑑 𝔇A Γ, x

𝑞:A ⊢ M 𝜎: B {𝑑 𝔇M

𝐹𝑉 (𝜆𝑖𝑥 :A.M) = x
𝑞: A 0Γ ⊢ A 0: U { A

Γ, x
𝑞:A ⊢ M 𝜎: B { M 0Γ ⊢ Πx

𝑞:A.B 0: U { Πx
q
:A.B

Γ ⊢ (𝜆𝑖𝑥𝑞:A.M) 𝜎: (Πx𝑞:A.B) {𝑑 𝔇A ∪𝔇M,𝔏i({x
q
: A} , xq

:A ↦→ M
𝜎:B)

Similarly, 𝔇3 in rule dqtt-d-Apply is extracted from 0Γ ⊢ B[N/x] 0: U . The rules make
sure that if a term is in the erased fragment, the function definitions extracted from it are all
in the erased fragment as well.

dqtt-d-Apply
Γ1 ⊢ M

𝜎: Πx𝑞:A.B {𝑑 𝔇1

Γ2 ⊢ N
𝜎 ′
: A {𝑑 𝔇2

0Γ1 ⊢ B[N/x] 0: U {𝑑 𝔇3
0Γ1 = 0Γ2 𝜎′ = 0 ⇔ (𝑞 = 0 ∨ 𝜎 = 0)

Γ ⊢ M N
𝜎: B[N/x] {𝑑 𝔇1 ∪𝔇2 ∪𝔇3

For example, the identity function (𝜆0𝑥0:𝑈0. 𝜆
1𝑥

1:A.x) now defunctionalizes to the following
form.

𝔇 ::= 𝔏1({A
0: U0} , x

1:A ↦→ x
1:A),𝔏0({} ,A

0:U0 ↦→ 𝔏1{A}
1:A→A)

identity ::= 𝔏0{}
Presumably, DQTT would be type-safe and consistent, and the extended defunctionaliza-

tion transformation would be type-preserving and correct. The proofs are planned in my
future work and similar proof techniques as those used for DCC are likely to suffice. For
type-safety and consistency, I could follow the method of Boulier et al. [8] to define a type-
preserving backward transformation that embeds DQTT into QTT so that the consistency
of QTT implies that of DQTT. Type-preservation of the transformation could be established
through a variant of the source language with explicit substitutions (see Section 3.4 in [28]).

4.4 Formalization of hereditary substitution

Normalization is an important subject in the study of 𝜆-calculus as it directly relates to the
decidability of 𝛽𝜂-equality, our ability to test if two terms are equal. In this section, I present
an Agda formalization of hereditary substitution, a normalization algorithm for simply typed
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lambda calculus 8. Its generalization in contextual modal type theory is related to the notion of
my defunctionalized labels, and the study of normalization its into my broader study of design
and implementation of dependently typed programming languages.

Syntax and normal forms

We start with the encoding of STLC in Agda: types include a base type ι and arrows types,
and contexts are lists of types. Variables are written in de-Bruijn indices, but I will use named
variables in the examples to explain better. Terms are indexed over a context and a type, with
constructors for variables, lambda abstractions, and applications. Intuitively, 𝑡 : Tm Γ 𝐴means
that Γ ⊢ 𝑡 : 𝐴.

data Ty : Set where
ι : Ty
_⇒_ : Ty → Ty → Ty

data Con : Set where
· : Con
_,_ : Con → Ty → Con

data Var : Con → Ty → Set where
vz : ∀{𝛤 𝛼 } → Var (𝛤 , 𝛼) 𝛼
vs : ∀{𝛤 𝛼 𝛽} → Var 𝛤 𝛼 → Var (𝛤 , 𝛽) 𝛼

data Tm : Con → Ty → Set where
var : ∀{𝛤 𝛼 } → Var 𝛤 𝛼 → Tm 𝛤 𝛼

lam : ∀{𝛤 𝛼 𝛽} → Tm (𝛤 , 𝛼) 𝛽 → Tm 𝛤 (𝛼 ⇒ 𝛽)
app : ∀{𝛤 𝛼 𝛽} → Tm 𝛤 (𝛼 ⇒ 𝛽) → Tm 𝛤 𝛼 → Tm 𝛤 𝛽

The 𝜂-long-𝛽-short normal forms (Nf) are mutually defined with neutral terms (Ne) that
stand for stuck computations – applications of a variable to a list of normals, which is called a
spine (Sp). Normal forms contain neutrals at the base type and functionswhose body is normal.
The syntax of neutrals and normals specifies that the normal forms are fully 𝜂-expanded and
𝛽-reduced, so, normal forms of functions must begin with a lambda.

mutual
data Nf : Con → Ty → Set where
lam : ∀{𝛤 𝛼 𝛽} → Nf (𝛤 , 𝛼) 𝛽 → Nf 𝛤 (𝛼 ⇒ 𝛽)
neu : ∀{𝛤 } → Ne 𝛤 ι → Nf 𝛤 ι

data Ne : Con → Ty → Set where
_,_ : ∀{𝛤 𝛼 𝛽} → Var 𝛤 𝛼 → Sp 𝛤 𝛼 𝛽 → Ne 𝛤 𝛽

data Sp : Con → Ty → Ty → Set where
· : ∀{𝛤 𝛼 } → Sp 𝛤 𝛼 𝛼

_,_ : ∀{𝛤 𝛼 𝛽 𝛾 } → Nf 𝛤 𝛼 → Sp 𝛤 𝛽 𝛾 → Sp 𝛤 (𝛼 ⇒ 𝛽) 𝛾

A renaming (Ren) is a type-preserving map of variables from a context to another, which
applies to terms and normal forms by simple inductions. Common renamings include the

8The source code can be found at https://github.com/H-Yulong/HereditarySubstitution/tree/
main.
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identity, weakening (which is just vs), and swapping that exchanges the order of the two
outermost variables. A renaming 𝜌 : Γ → Δ can be extended to one of type (Γ, 𝛼) → (Δ, 𝛼),
which maps the extended variable of type 𝛼 to itself and others according to 𝜌 .

Ren : Con → Con → Set
Ren 𝛤 𝛥 = ∀{𝛼 } → Var 𝛤 𝛼 → Var 𝛥 𝛼

id : ∀{𝛤 } → Ren 𝛤 𝛤

wk : ∀{𝛤 𝛼 } → Ren 𝛤 (𝛤 , 𝛼)
sw : ∀{𝛤 𝛽1 𝛽2} → Ren (𝛤 , 𝛽1 , 𝛽2) (𝛤 , 𝛽2 , 𝛽1)

ext : ∀{𝛤 𝛥 𝛼 } → Ren 𝛤 𝛥 → Ren (𝛤 , 𝛼) (𝛥 , 𝛼)
ext 𝜌 vz = vz
ext 𝜌 (vs x) = vs (𝜌 x)

Normalization and hereditary substitution

We can now attempt to define a normalization function by pattern matching on the construc-
tors of Tm. If we see a variable, we apply the 𝜂-expansion. In the case of functions, we push
the normalization inside the lambda abstraction. If we find an application𝑀 𝑁 , we know that
the normal form of 𝑀 must be 𝜆𝑥.𝑀′ for some normal form 𝑀′, and the application reduces
to the substitution𝑀′[𝑁 ′/𝑥] where 𝑁 ′ is the normal form of 𝑁 .

However, the capture-avoiding substitution does not preserve normal forms! For example,
(𝑥 𝑁 ) [𝜆𝑧.𝑀/𝑥] gives (𝜆𝑧.𝑀) 𝑁 , which contains a 𝛽-redex. So, instead of the conventional
substitution, we need to define a hereditary substitution that keeps reducing these 𝛽-redices
until there is none.

It is easier to define hereditary substitution in the single-variable style, i.e. 𝑀 [𝑁 ] that
substitutes 𝑁 for the most recent variable in𝑀 . We first see how it works on terms.

{-# TERMINATING #-}
_[_]Tm : ∀{𝛤 𝛼 𝛽} → Tm (𝛤 , 𝛽) 𝛼 → Tm 𝛤 𝛽 → Tm 𝛤 𝛼

var vz [ N ]Tm = N
var (vs x) [ N ]Tm = var x
lam M [ N ]Tm = lam (ren M sw [ ren N wk ]Tm)
app M M’ [ N ]Tm = app (M [ N ]Tm) (M’ [ N ]Tm)

We give the definition via pattern matching and suppose the outermost variable is 𝑧. In the
variable case, if the variable is 𝑧 then we replace it with 𝑁 , otherwise we leave it untouched.
In the application case, we substitute for both terms. For the case of 𝜆𝑥.𝑀 , we need to apply
a swapping renaming to 𝑀 as the most recent variable is the bound variable 𝑥 instead of 𝑧,
and then perform the substitution (note that 𝑁 is weakened as we moved inside one layer of
lambda abstraction). However, this case fails Agda’s termination check, which only accepts
functions that recurse on syntactically smaller arguments. Agda complains that (ren M sw) is
a problematic argument to the recursive call, as it cannot recognize that renaming of a term
does not make it grow bigger than before!

There is an elegant solution to this problem. We could delay the renamings on function
bodies in a “continuation” and perform them all at once when we hit the variable case. Now,
the code becomes:
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_[_,_]Tm : ∀{𝛤 𝛥 𝛼 𝛽} → Tm 𝛤 𝛼 → Ren 𝛤 (𝛥 , 𝛽) → Tm 𝛥 𝛽 → Tm 𝛥 𝛼

var x [ 𝜌 , N ]Tm with 𝜌 x
... | vz = N
... | vs y = var y
lam M [ 𝜌 , N ]Tm = lam (M [ sw ◦ ext 𝜌 , ren N wk ]Tm)
app M M’ [ 𝜌 , N ]Tm = app (M [ 𝜌 , N ]Tm) (M’ [ 𝜌 , N ]Tm)

It takes one more argument 𝜌 as the rest of renamings to do. Intuitively, 𝑀 [𝜌, 𝑁 ] will
rename 𝑀 with 𝜌 , and then perform the single-variable substitution with 𝑁 . When 𝜌 is the
identity renaming, we recover the usual single-variable substitution. In the variable case, we
check if 𝜌 𝑥 gives the most recent variable and perform substitution accordingly. We still
substitute for both terms in the application case. In the lambda case, we push the swapping
into the continuation by composing it with the extended version of 𝜌 (since we are moving
inside one layer of lambda binding). Agda now finds it structurally recursive and admits that
it is terminating, as the first argument is decreasing syntactically.

This technique extends to the hereditary substitution scenario, giving a terminating single-
variable substitution that preserves normal forms.

_[_,_] : ∀{𝛤 𝛥 𝛼 𝛽} → Nf 𝛤 𝛼 → Ren 𝛤 (𝛥 , 𝛽) → Nf 𝛥 𝛽 → Nf 𝛥 𝛼

lam t [ 𝜌 , u ] = lam (t [ sw ◦ ext 𝜌 , renNf u vs ])
neu (x , sp) [ 𝜌 , u ] with 𝜌 x
... | vz = u $ (sp < 𝜌 , u >)
... | vs x = neu (x , (sp < 𝜌 , u >))

_<_,_> : ∀{𝛤 𝛥 𝛼 𝛽 𝛾 } → Sp 𝛤 𝛼 𝛾 → Ren 𝛤 (𝛥 , 𝛽) → Nf 𝛥 𝛽 → Sp 𝛥 𝛼 𝛾

· < 𝜌 , u > = ·
(t , sp) < 𝜌 , u > = (t [ 𝜌 , u ]) , (sp < 𝜌 , u >)

_$_ : ∀{𝛤 𝛼 𝛽} → Nf 𝛤 𝛼 → Sp 𝛤 𝛼 𝛽 → Nf 𝛤 𝛽

t $ · = t
lam t $ (u , sp) = (t [ id , u ]) $ sp

The lambda case is the same as before. Recall that a neutral term is a stucked application
of a variable to a list of normals. If the variable is substituted by a normal form, the application
can carry on iteratively with $. Otherwise, we just map the substitution to the list of normals.
Now, we can easily define normalization.

nf : ∀{𝛤 𝜎} → Tm 𝛤 𝜎 → Nf 𝛤 𝜎

nf (var x) = nvar x
nf (lam t) = lam (nf t)
nf (app t u) with nf t | nf u
... | lam t’ | u’ = t’ [ id , u’ ]

Correctness of normalization

I proved that the normalization algorithm is sound and complete, in the sense that:

• Soundness: 𝛽𝜂-equivalent terms have equal normal forms.

• Completeness: terms are 𝛽𝜂-equivalent to their normal forms.
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As a corollary, normalization is idempotent on terms. In fact, normalization is idempotent
on all normal forms, and I showed that there exists a unique normal form for every class of
𝛽𝜂-equivalent terms. That is, if two normal forms are equivalent, then they are syntactically
equal.

Related work

Watkins et al. first introduced hereditary substitution for a normalizer in Concurrent Logical
Framework [46]. The formalization presented is improved from the formalization byKeller and
Altenkirch [29], which defined a “removal from context” operation to establish termination,
making the correctness properties harder to prove.

The alternative normalization algorithm is NbE (discussed in §2.2), which is more efficient
in practice but conceptually harder to understand and requires more work to establish cor-
rectness. Often, complicated logical relations are required, but all we need is induction for
hereditary substitutions.

Future work

The continuation technique extends to contextual modal type theory (CMTT) with meta-
variables and meta-substitutions to express code that abstract over contexts [37]. The notion
and treatment of meta-variables are similar to the defunctionalized labels in DCC (see §4.1), so,
investigating the normalization of CMTT might bring insight into my project for the thesis.

The completeness theorem also produces a chain of rewrites that turns a term into its
normal form. The rewrites are subjected to renamings, substitutions, and they have normal
forms as well. The formalization of hereditary substitution is a suitable starting point for
studying the equational theory of rewrites, providing a mechanized proof that all rewrites
between two terms are equal, which is a known theorem from [26, 24].

5 Thesis proposal
In my initial progress, I have developed defunctionalization to remove higher order functions
andmake function closures explicit with a specialized calculus (§4.1). Then, I showed that such
defunctionalized calculus can be used as the reasoning logic of a dependently typed assembly
language (§4.2). The next step is extending this process with quantitative types, and I have
developed defunctionalization with QTT in (§4.3) as a start.

My final step is deriving QTAL, a quantitatively and dependently typed assembly lan-
guage, from the intermediate language used in QTT’s defunctionalization. The development
for QTAL consists of three parts: syntax and semantics, meta-theory, and implementation,
each marks a major milestone toward my final goal of providing reliable compilation to de-
pendently typed languages.

Syntax and semantics. Following the design principles outlaid in §4.2, the syntax of QTAL
will have two parts: a type theory as its reasoning logic, and a RISC-style assembly instruction
set for a stack machine.

The logicwill be theDefunctionalizedQuantitative Type Theory (DQTT) introduced in §4.3,
as it supports both quantitative types and defunctionalized intermediate representations. I will
formally define its syntax, substitution, reduction, equality, type judgements, and the defunc-
tionalization transformation into DQTT. It will be extended with datatypes like dependent
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pairs, natural numbers, and identity types to demonstrate its ability to deal with various data
structures. An extension to inductive families is conceptually simple yet technically compli-
cated (as discussed in §2.1), so, I will not include them into the initial plan.

For the assembly language part, I will define its runtime values, the instruction set, oper-
ational semantics, type checking rules which checks if a sequence of instructions implements
the computation given by its type signature, and a process that generate assembly code from
DQTT expressions. The instructions include a direct jmp operation to support tail calls and
CPS-based compilation.

A potential risk is that QTT does not have a resource-aware operational semantics, and it
is difficult to reason about a program’s usage of resources at runtime. I plan to adapt the heap
semantics for graded type theory [14] (inspired by [45]) to QTT and then QTAL. If that is not
successful, I will use the conventional operational semantics instead.

Meta-theory. I will establish the following meta-theoretical properties for QTAL and the
transformations involved.

• Type safety and consistency. DQTT, the reasoning logic of DTAL, must be type-safe
and consistent as a dependent type theory. QTAL’s assembly part should also be type-
safe, in the sense that well-typed programs always terminate and will not stuck before
it reaches a halt instruction or returns a value.

• Type preservation and correctness. The two transformations – extended defunction-
alization for quantitative types and the assembly code generation – should preserve the
input program’s type and operational behavior, like Theorem 4.4 for DCC.

• Erasure. QTAL should admit type erasure and runtime erasure: removing the type
signatures and the 0-usage fragment from a code block should not affect its computation.

These theorems are likely to be proved by inductions, as similar results are obtained by this
way for DCC and graded type theory (see Theorem 3.18 in [28]; Theorem 7.5 in [14]). In the
case that plain induction does not suffice, I will investigate more powerful proof techniques
such as logical relations. I do not plan to mechanize the proofs as it is unlikely to finish within
two years – there is no known formalization of QTT for reference and the formalization of
graded modal dependent type theory took around 49000 lines of Agda [2]. Instead, the project
focuses more on the design and implementation of QTAL.

Implementation. Fig. 7 shows the sketch of a type-preserving compiler for dependently
typed languages targeting QTAL. Compared to Fig. 3, it is typed all the way down to the
assembly level, and the compiler outputs can be type checked after linking and optimization
for correctness. Types and runtime irrelevant components are only removed before generating
binary code for execution (after linking and checking is completed). Quantity annotations are
inferred at the elaboration stage for source languages without quantitative types.

My implementation starts with the core language QTT, followed by defunctionalization
into DQTT, and then assembly code generation into QTAL, followed by optimization stages
such as remove needless closure creations. Currently, dependently typed CPS transforma-
tion [11] and ANF transformation [30] that exposes control flows suffer from extensionality
issues, and type-checking of their generated intermediate representations could be undecid-
able. So, incorporating CPS-related compilation is left for future work and I will only use
defunctionalization in this project. The type checking will use a bidirectional algorithm with
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Figure 7: Sketch of type-preserving compiler for dependent types.

normalization by evaluation (see §2.2) for efficiency. Bidirectional checking of QTT is similar
to the type checking of Granule [40]. Although NbE for quantitative types is not yet known,
it is not difficult to derive following [1, 25]. I do not plan to show the correctness of NbE for
QTT, but this topic is worth pursuing if time permits.

I will evaluate the compiler with programs that has implementations in both dependent and
non-dependent type systems, for example: sorting, list processing, and array manipulation.
The generatedQTAL code is compared against code compiled naivelywithout runtime erasure,
hand-written fine-tuned algorithms inQTAL, and code generated fromnon-dependently typed
programs.

Table 1 shows my timeplan for the next two years. I aim to submit two acedemic pa-
pers, one on the quantitatively and dependently typed assembly language QTAL, another on
the type-preserving compilation from QTT to QTAL. My goal is to show that the QTAL code
generated from type-preserving compilation can be type-checked for correctness and runtime
irrelevant components can be safely erased for efficiency. For the first time, it will be pos-
sible to build high-assurance and high-performance compilers for languages with extremely
sophisticated type systems.
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Time Scheduled work
2023 Nov - Dec Define the syntax of DQTT with dependent pairs, natural numbers, and

identity types. Work out bidirectional typing and NbE for QTT and DQTT.
Develop a heap semantics for QTT. Define the syntax of QTAL (based on
DQTT). This includes: the assembly’s syntax (instructions, code blocks, and
machine word values), type checking rules, and a resource-aware opera-
tional semantics.

2024 Jan - Mar Prove consistency for DQTT and type safety for QTAL’s assembly part.
Show that QTAL admits both type erasure and runtime erasure. Start im-
plementing the type-checker and interpreter for QTAL.

2024 Apr - Jun Finish the type checker and interpreter for QTAL. Start writing the paper
on QTAL aiming POPL 2025 (which dues in July).

Milestone The syntax, operational semantics, and meta-theory of QTAL are fully devel-
oped.

2024 Jul - Sep Finish the POPL paper on QTAL and submit. Define the defunctionaliza-
tion transformation for QTT into DQTT, and start proving its correctness
and type-preservation. Implement the defunctionalization transformation.
Summer break.

Milestone My work on QTAL is submitted successfully to POPL.
2024 Oct - Dec Define the code generation algorithm from DQTT to QTAL. Finish the cor-

rectness and type-preserving proofs for defunctionalization. Implement the
code generation and test the whole transformation from QTT to QTAL.

Milestone Having the first prototype of a type-preserving compiler targeting QTAL.
2025 Jan - Mar Develop tools for separate compilation fromQTT toQTAL and test the com-

piler implementation. Show that the code generation is type-preserving and
correct. Buffer time for any unfinished proofs and unexpected situations.
Milestone: All meta-theory involved in QTAL are established.

2025 Apr - Jun Add optimization stages to improve the performance of generated QTAL
code. Implement a naive compiler without runtime erasure. Write de-
pendently and non-dependently typed programs for evaluations. Compare
the efficiency of the generated QTAL code against outputs from the naive
compiler, non-dependently typed implementations, and fine-tuned hand-
written QTAL programs.

Milestone Having imperial evidence that the QTAL compiler produces more efficient code
than the compilation without erasure.

2025 Jul - Sep Finalizing the implementation, experiment with more optimization stages
to further improve. Start writing the paper about compilation from QTT to
QTAL at PLDI 2026 (which dues in November). Summer break.

2025 Oct - Dec Keep preparing for the PLDI paper.
Milestone My work on compilation from QTT to QTAL is submitted successfully to PLDI.

Table 1: Timeplan for the next two years.
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