
Defunctionalization with dependent types

Yulong Huang
Robinson College

Submitted in partial fulfillment of the requirements for the
Computer Science Tripos, Part III

University of Cambridge
Computer Laboratory
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: yh419@cam.ac.uk

May 27, 2022

Declaration

I, Yulong Huang of Robinson College, being a candidate for Computer Science Tripos,

Part III, hereby declare that this report and the work described in it are my own work,

unaided except as may be specified below, and that the report does not contain material

that has already been used to any substantial extent for a comparable purpose.

Total word count: 9487

Signed: Yulong Huang

Date: May 27, 2022

This dissertation is copyright ©2022 Yulong Huang.

All trademarks used in this dissertation are hereby acknowledged.

Abstract

This dissertation studies defunctionalization, a program transformation that turns a higher-

order functional program into a first-order one. Type-preserving defunctionalization for

simply-typed and polymorphic systems is well-studied in the literature, and my work

extends defunctionalization further to dependently-typed systems.

I illustrate that Pottier and Gauthier’s polymorphic defunctionalization does not extend to

dependently-typed languages. Then, I present abstract defunctionalization as an alternative

approach. Abstract defunctionalization consists of a target language with a primitive

notion of function labels that fits the abstract description of defunctionalization, and a

transformation from the source language to the target language. I prove the transformation

type-preserving and correct, and I show that the target language is type-safe and consistent.

An interpreter of the target language and the transformation are implemented in OCaml.

Acknowledgements

I would like to thank my project supervisor, Dr Jeremy Yallop, and my Director of Studies,

Prof Alan Mycroft, for their countless valuable suggestions, feedback and comments on

my project, writing, and academic study in general. I also thank my project co-supervisor

David Sheets for sharing his ideas and insights in our weekly meetings.

Contents

1 Introduction 1

1.1 Motivation and contributions . 1

1.2 Related work in type-preserving compilation 3

2 Background 4

2.1 Defunctionalization . 4

2.1.1 Simply-typed programs . 4

2.1.2 Polymorphic programs . 6

2.1.3 Related work in defunctionalization 8

2.2 The source language (CC) . 9

3 A failing attempt 12

3.1 Inductive families . 12

3.2 Failure to defunctionalize . 14

4 Abstract defunctionalization 16

4.1 Main ideas . 16

4.2 Defunctionalized Calculus of Constructions (DCC) 18

4.2.1 Syntax . 18

4.2.2 Type judgements . 19

4.3 Transformation . 21

4.3.1 Term transformation . 22

4.3.2 Extracting function definitions . 23

5 Type preservation, correctness, and consistency 27

5.1 Correctness and type preservation . 27

5.2 Type safety and consisntency . 35

6 Conclusion and future work 38

6.1 Implementation of abstract defunctionalization 38

6.2 Future work . 40

List of Figures

2.1 CC Syntax . 10

2.2 CC Typing . 10

2.3 Well-formedness of CC context . 10

2.4 CC reduction and equivalence . 11

4.1 DCC syntax . 19

4.2 DCC Typing . 20

4.3 Well-formedness of DCC contexts and label contexts 20

4.4 DCC reduction and equivalence . 21

4.5 Defunctionalization transformation . 22

4.6 Extracting function definitions . 24

5.1 New syntax and rules in CCS . 30

5.2 Backward transformation . 35

1

Chapter 1

Introduction

Dependent types are used to verify the correctness of large-scale programs, as they can

express program specifications with their type system and guarantee that all specifications

hold by type-checking. A modern trend in compiling dependently-typed languages is to

turn source programs into target programs in a dependently-typed intermediate language

and preserve the type information [1]. In this way, program specifications are preserved

through types and checking the correctness of separately compiled and linked programs

becomes possible. Type-preserving compilation is well-studied in non-dependently-typed

scenarios, and the current challenge is adapting compiler transformations for non-dependent

types to dependent types.

This dissertation studies defunctionalization, a program transformation that turns a higher-

order functional program into a first-order one by replacing every function with a label

(a special kind of first-class value). Type-preserving defunctionalization for simply-typed

and polymorphic systems is well-established in the literature [2, 3], and my work extends

defunctionalization further to dependently-typed systems.

This introduction motivates the development of type-preserving compilers for dependently-

typed languages. It then summarizes the contributions of this dissertation and discusses

related works in type-preserving compilation.

1.1 Motivation and contributions

Dependently-typed systems are used for verifying the functional correctness of a range of

large-scale software, from the CompCert C compiler [4] to the CertiKOS OS kernel [5]. In

dependently-typed systems, types may contain term variables and the type of a function’s

output could depend on the value of its input. The type of a dependent function is

denoted as Πx :A. B, where B is called an indexed family of types (indexed by terms of

1

type A). With the proposition-as-types principle, a dependently-typed calculus is both

a programming language and a logic. So, it is possible to specify invariants and Hoare-

logic style pre- and post-conditions for programs as types, and dependent type-checking

guarantees that the specified conditions hold. For example, I can specify the following

type for a safe natural-number division function in Agda, which takes arguments x, y, and

an proof that y is non-zero to type-check.

(* Returns x / y *)

div : (x : Nat) -> (y : Nat) -> (p : y > 0) -> Nat

However, correctness is not guaranteed for separately compiled programs. For example,

programmers may break specifications by linking incompatible pieces of separately compiled

code. There is no way to check the specifications of separately compiled and linked programs,

since the current implementation of compilers for dependently-typed languages removes

type information after compiling. In other words, there is no way to enforce correctness

on the target code with dependent types and type-checking.

This problem can be solved with type-preserving compilation, a well-known technique

in non-dependently-typed scenarios. These compilers preserve function behaviours and

program semantics like regular compilers. Furthermore, they preserve the type information

– well-typed source programs are turned into well-typed target programs in a typed

intermediate language. It is possible to type-check the target code and ensure correctness

statically in separately compiled and linked programs using the preserved types. Type

information is only removed after the program is fully linked and checked. The current

challenge of developing type-preserving compilers for dependently-typed languages is

adapting non-dependently-typed compiler transformations to dependent types.

Defunctionalization is a compilation technique that turns higher-order functional programs

into first-order ones. It is well-studied in simply-typed and polymorphic scenarios, and my

work extends defunctionalization further to dependently-typed systems.

Contributions The main contribution of this dissertation is abstract defunctionalization,

a method of performing type-preserving defunctionalization with dependent types. Abstract

transformation consists of a target language with a primitive notion of function labels that

fits the abstract description of defunctionalization, and a transformation from the source

language into the target language. I prove that the transformation is type-preserving and

correct, and the target language is type-safe and consistent.

The remainder of this dissertation is structured as follows. In Chapter 2, I explain the

standard method of defunctionalization for simply-typed and polymorphic programs and

defines the source language of dependently-typed defunctionalization. In Chapter 3, I illus-

trate that Pottier and Gauthier’s standard technique of polymorphic defunctionalization [3]

2

does not extend to dependently-typed systems.

In Chapter 4, I present abstract defunctionalization as an alternative method. This

chapter formally presents the Defunctionalized Calculus of Constructions (DCC), the

target language of abstract defunctionalization. It also defines the defunctionalization

transformation from the source language into DCC. Chapter 5 presents the proof of type

preservation and correctness of the transformation and shows that DCC is consistent and

type-safe. Chapter 6 concludes the dissertation with a closing remark on implementing

DCC in OCaml and future work.

1.2 Related work in type-preserving compilation

Type-preserving compilation was initially developed for optimizing and verifying the

compiled code, and it is a well-known technique in compiler design for languages that are

not dependently-typed. Tarditi et al. [6] developed TIL (typed intermediate language), an

ML compiler featuring type-directed code optimization of loops, garbage collections, and

polymorphic function calls.

Morrisett et al. [7] developed a type-preserving translation from System F to TAL (typed

assembly language). Later, Xi and Harper [8] introduced DTAL, which extends TAL with

a restricted form of dependent types, making it suitable for compiling a variant of ML

with dependent datatype extensions. Necula’s proof-carrying code [9] is another early

method for generating reliable executables. It relies on an external logical framework to

check the correctness of proofs attached with the code.

Recently, Bowman et al. contributed a series of work about compiling with dependent types,

including the type-preserving continuation-passing style (CPS) and closure conversion

transformations [10, 11].

3

Chapter 2

Background

This chapter gives a survey about defunctionalization transformation in non-dependently-

typed systems (Section 2.1) and presents the definition the source language (CC) for

dependently-typed defunctionalization (Section 2.2).

2.1 Defunctionalization

Defunctionalization is a whole-program transformation that turns higher-order functional

programs into first-order ones. This section explains type-preserving defunctionalization

for simply-typed and polymorphic source programs with illustrating examples.

2.1.1 Simply-typed programs

Defunctionalization is based on the observation that a program has only finitely many

function definitions. Therefore, if the whole program is available, we can enumerate every

function and replace them with distinct constructors of an algebraic data type (ADT) in

the target language. I refer to these constructors as labels. Defunctionalization translates

function applications into calls to an auxiliary apply function, which takes a label and

the function argument, performs case analysis on the label, and returns the result of the

corresponding function applied to the argument. In other words, letting [[−]] denote the

transformation, [[e1 e2]] = apply [[e1]] [[e2]], where apply [[e1]] [[e2]] simulates the behavior of

e1 e2 in the source language.

Suppose the source and the target language are both OCaml. Example 2.1.1 shows how to

defunctionalize a simply typed higher-order program to a simply-typed first-order program.

Example 2.1.1. Let the source program be:

let rec map : (int -> int) -> int list -> int list =

fun f ls -> match ls with

4

| [] -> []

| hd :: tl -> (f hd) :: (map f tl)

in

map (fun x -> x + 1) (map (fun x:int -> x) [1])

It contains two first-class anonymous functions of the type int -> int. Defunctionaliza-

tion involves defining a data type lam with two constructors, one for each function.

(* Incr represents (fun x -> x + 1) *)

(* Id represents (fun x:int -> x) *)

type lam = Incr | Id

The next step is defining the auxiliary function apply : apply f arg returns the result of

applying the source-program function which f represents to the argument arg. If f is

Incr, it returns arg + 1, and similarly for case Id.

let apply : lam -> int -> int =

fun f arg -> match f with

| Incr -> arg + 1

| Id -> arg

Now, the defunctionalized target program can be obtained by replacing all the first-class

functions with their corresponding labels and all the function applications with calls to

apply.

let rec map ’ : lam -> int list -> int list =

fun f ls -> match ls with

| [] -> []

| hd :: tl -> (apply f hd) :: (map ’ f tl)

in

map ’ Incr (map ’ Id [1])

Note that map’ now takes first-order values of type Lam instead of functions.

Type preservation

Informally speaking, a type-preserving transformation turns a well-typed source program

to a well-typed target program. In Example 2.1.1, all first-class functions have the same

type. Example 2.1.2 shows that defunctionalization produces ill-typed programs when

first-class functions are not all in the same type.

Example 2.1.2. Let the source program be:

let compose : (int -> bool) -> (int -> int) -> int -> bool =

fun g f x -> g (f x)

in

compose (fun x -> x > 0) (fun x:int -> x) 1

5

Data type lam and the apply function are defined similarly as in Example 2.1.1.

(* ToBool represents (fun x -> x > 0) *)

(* Id represents (fun x : int -> x) *)

type lam = ToBool | Id

let apply f arg = match f with

| ToBool -> arg > 0

| Id -> arg

Function apply is ill-typed – it returns a bool in case ToBool and returns an int in case

Id.

A minor adjustment can fix this problem: defining two apply functions, one for functions

of type int -> bool, another one for functions of type int -> int.

(* apply_int_bool : Lam -> int -> bool *)

let apply_int_bool f arg = match f with

| ToBool -> arg > 0

(* apply_int_int : Lam -> int -> int *)

let apply_int_int f arg = match f with

| Id -> arg

let compose ’ g f x = apply_int_bool g (apply_int_int f x) in

compose ’ ToBool Id 1

In general, simply typed defunctionalization need to define a family of monomorphic apply

functions (i.e. one specialized function apply a b for each function type a -> b in the

source program) to achieve type preservation.

2.1.2 Polymorphic programs

In languages with polymorphism and generalized algebraic data types (GADTs), defunc-

tionalization can be done similarly as in simply-typed scenarios – first-class functions are

replaced by labels, and applications are translated to calls into the apply function. The

difference is that we only need one polymorphic apply, and function labels are defined as

constructors of a GADT. GADTs allow data types to take type parameters, and construc-

tors may return specific instantiations of the parameters. Suppose our target language now

supports GADTs, Example 2.1.3 shows how to defunctionalize a polymorphic higher-order

program.

Example 2.1.3. Consider the polymorphic composition function:

let compose : type a b c. (b -> c) -> (a -> b) -> a -> c =

fun g f x -> g (f x)

6

in

compose (fun x -> x > 0) (fun x -> x) 1

(fun x -> x) is the polymorphic identity function. The type lam takes two type parame-

ters, and a function of type a -> b in the source program translates into a label of type

(a, b) lam. Note that the constructor ToBool, which corresponds to a non-polymorphic

function, has instantiated parameters.

type (’a, ’b) lam =

ToBool : (int , bool) lam

| Id : (’a, ’a) lam

let apply : type a b. (a, b) lam -> a -> b =

fun f arg -> match f with

| ToBool -> arg > 0

| Id -> arg

Again, the target program is obtained by replacing first-class functions with their corre-

sponding labels and function applications with calls to apply, and the result is well-typed.

let compose ’ : type a b c.

(b, c) lam -> (a, b) lam -> a -> c =

fun g f x -> apply g (apply f x)

in

compose ’ ToBool Id 1

Functions with free variables

Defunctionalization was initially presented as a programming technique for eliminating

functions with functional arguments [12]. The concept and technique generalize to elimi-

nating functions that return functions, for example, the curried version of integer addition,

whose type is int -> (int -> int). The returned functions may contain free variables,

and defunctionalization translates free variables into arguments to their corresponding

function labels. In general, the label of a function f:a -> b with free variables x1:t1,

..., xn:tn has the form:

Fun : t1 -> ... -> tn -> (a, b) lam

Arguments to the label form an environment that stores values of free variables. A label

with fully-applied arguments is similar to a closure, except that a closure stores the function

pointer together with the environment, whereas defunctionalization keeps the function

definition separately in apply. Example 2.1.4 shows the defunctionalization of the curried

integer addition.

Example 2.1.4. The source program is the curried integer addition.

7

let plus : int -> (int -> int) =

fun x -> (fun y -> x + y)

in

plus 1 2

There are two function definitions in the code above. Applying the polymorphic de-

functionalization technique explained in Example 2.1.3, lam and apply are defined as

follows.

type (’a, ’b) lam =

Plus : (int , (int , int) lam) lam

| Plus_x : int -> (int , int) lam

let apply : type a b. (a, b) lam -> a -> b =

fun f arg -> match f with

| Plus -> Plus_x arg

| (Plus_x x) -> x + arg

There is a free variable x of type int in (fun y -> x + y), so the corresponding con-

structor Plus x takes an argument of type int.

The target program is obtained in a similar way as in previous examples.

let plus ’ : (int , (int , int) lam) lam = Plus

in apply (apply plus ’ 1) 2

2.1.3 Related work in defunctionalization

Defunctionalization is first presented in its untyped form by Reynolds in the 1970s

as a programming technique to translate a higher-order interpreter into a first-order

one [12]. It is later used as an implementation technique in various applications such

as ML compilers [13, 14], type-safe garbage collectors [15], and representing higher-

kinded polymorphism in OCaml [16]. The method of using a family of monomorphic

apply functions to achieve type preservation is the standard workaround for simply-typed

defunctionalization in the literature [2, 17, 14, 18]. Danvy and Nielsen’s survey contains

more examples of defunctionalization in practice [19].

Formalization of defunctionalization focused on proving type preservation and correctness

of the transformation. Bell et al. proved that the transformation for simply typed

programs is type preserving [2]. Nielsen presented a proof for its partial correctness in

denotational semantics [18], and Banerjee et al. provided a proof for total correctness in

operational semantics [20]. Pottier and Gauthier formalized type-preserving polymorphic

defunctionalization in System F extended with GADTs [3].

8

2.2 The source language (CC)

The source language (which I refer to as CC) I will use to define dependently-typed

defunctionalization is a variant of Coquand’s Calculus of Constructions [21]. To be precise,

it is a subset of Luo’s Extended Calculus of Constructions [22], which combines Coquand’s

original Calculus of Constructions (with only one impredicative universe) with a Martin-Löf

style universe hierarchy1.

Dependently-typed languages have universes, also known as kinds or sorts, and they are

essentially the types of types. CC uses an infinite hierarchy of predicative universes Ui,

where i ranges over natural numbers, and the type of universe Ui is Ui+1. Therefore,

universes form an infinite hierarchy:

U0 : U1 : U2 : · · ·

CC’s syntax is presented in Figure 2.1. Term expressions of CC are: variables (from

an infinite set of variable names), universes, dependent function types (or Π-types),

applications, and functions. A CC context is a list of variable-expression pairs.

CC’s typing judgements are of the form Γ ⊢ e :A, where Γ is a context and e, A are terms.

A context is well-formed if every variable in it is associated with a valid type, that is,

the associated expression’s type is a universe. The judgement for the well-formedness of

contexts is ⊢ Γ.

CC’s rules for typing (Fig 2.2) and well-formedness of contexts (Fig 2.3) are mutual-

inductively defined. The type of a variable x is A if x :A is present its well-formed context

Γ (Var). The type of a universe Ui is Ui+1 (Universe), and the type of Πx :A. B is the

highest universe among universes of A and B (Pi). If e has type B in some context Γ

extended with x :A, then λx :A. e has the dependent function type Πx :A. B (Lambda).

Applications have types B[e2/x], since the output of a function type may depend on the

input value (Apply). If an expression e has type A and A is equivalent to B (under context

Γ), then e also has type B (Equiv).

I write Γ ⊢ A :U to mean that Γ ⊢ A :Ui for some i (which means that A is a type), and

A → B stands for the Π-type Πx :A. B where B does not depend on x. Base types are

omitted for simplicity, but I will use base types like the unit type and the natural numbers

freely in examples.

Figure 2.4 defines reduction and equivalence in CC. The only reduction rule is the β-

reduction, (λx :A. e1) e2 ▷ e1[e2/x]. I write e1 ▷
∗ e2 to mean that e1 reduces to e2 in a

1A definition is impredicative if it is self-referencing. The type of an impredicative universe is itself,
like Type : Type. In a predicative hierarchy of universes, the type of a universe Ui is always a larger
universe Ui+1.

9

Universes U ::= Ui

Expressions e, A, B ::= x | U | Πx :A. B | e1 e2 | λx :A. e

Context Γ ::= · | Γ, x :A

Figure 2.1: CC Syntax

x :A ∈ Γ ⊢ Γ

Γ ⊢ x :A
(Var)

⊢ Γ

Γ ⊢ Ui :Ui+1

(Universe)

Γ ⊢ A :Ui Γ, x :A ⊢ B :Uj

Γ ⊢ Πx :A. B :Umax(i,j)

(Pi)

Γ ⊢ e1 : Πx :A. B Γ ⊢ e2 :A

Γ ⊢ e1 e2 :B[e2/x]
(Apply)

Γ, x :A ⊢ e :B

Γ ⊢ λx :A. e : Πx :A. B
(Lambda)

Γ ⊢ e :A Γ ⊢ B :U Γ ⊢ A ≡ B

Γ ⊢ e :B
(Equiv)

Figure 2.2: CC Typing

sequence with zero or more steps. The reduction rule can be thought of the operational

semantics of CC.

In CC, two terms are equivalent if they reduce to the same term (Eq-reduce) or are η-

equivalent. The η-equivalence is defined by two symmetric rules (Eq-Eta1) and (Eq-Eta2).

Rule (Eq-Eta1) states that e1 and e2 are equivalent if e1 reduces to a lambda abstraction

λx :A. B, e2 reduces to some e′2, and e′2 x ≡ e in the context extended with x :A.

⊢ ·
(WF-Empty)

⊢ · Γ ⊢ A :U

⊢ Γ, x :A
(WF-Con)

Figure 2.3: Well-formedness of CC context

10

(λx :A. e1) e2 ▷ [e1/e2] (Beta)

e1 ▷
∗ e e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
(Eq-reduce)

e1 ▷
∗ λx :A. e e2 ▷

∗ e′2 Γ, x :A ⊢ e ≡ e′2 x

Γ ⊢ e1 ≡ e2
(Eq-Eta1)

e1 ▷
∗ e′1 e2 ▷

∗ λx :A. e Γ, x :A ⊢ e′1 x ≡ e

Γ ⊢ e1 ≡ e2
(Eq-Eta2)

Figure 2.4: CC reduction and equivalence

CC has a useful property: if Γ ⊢ e :A, then Γ ⊢ A :U . Precisely, in the derivation tree of

Γ ⊢ e :A, there must be a sub-derivation tree of Γ ⊢ A :U .

As standard results from the literature [21, 22], CC is type safe and consistent, and

type-checking in CC is decidable. Despite having a minimalistic syntax, CC can express

many useful functions, for example, the polymorphic identity function and the dependent

composition function.

Example 2.2.1. In System F, the polymorphic identity function has type ∀a. a → a.

In CC, we can define a dependent function that takes a type A and returns the identity

function of type A → A.

identity ≜ λA :U0. λx :A. x

· ⊢ identity : ΠA :U0. A → A

Example 2.2.2. This example shows that CC can write complicated but meaningful

programs like the dependent composition function. The usual composition takes a function

f of type A → B, a function g of type B → C, an input x of type A (here A, B, and C

are simple types) and returns the result of g(f x). The dependent composition generalizes

this to the case where B is a family of types indexed by terms of type A, and C is a family

indexed by terms x of type A and terms of type B x.

compose ≜ λg : (Πx :A.Πy :B x. C x y). λf : (Πx :A. B x). λx :A. g x (f x)

Γ ≜ ·, A :U0, B :A → U0, C :Πx :A. (B x) → U0

Γ ⊢ compose : Πg : .Πf : .Πx :A. C x (f x)

11

Chapter 3

A failing attempt

This chapter shows that Pottier and Gauthier’s polymorphic defunctionalization technique

cannot be adapted to dependent types. Section 3.1 introduces inductive families, a more

general version of GADTs in dependently-typed languages. Section 3.2 proves that it is

impossible to generalize polymorphic defunctionalization with GADTs to dependently-

typed defunctionalization with inductive families.

3.1 Inductive families

This section introduces inductively defined data types in dependent types (inductive

families), and I present code examples in Agda, a dependently-typed programming language

with a Haskell-like syntax. No knowledge of Agda is required to understand the contents

of this section, except for two things:

• In Agda, there is an infinite hierarchy of predicative universes

Set0:Set1:Set2: · · ·

similar to the hierarchy in CC.

• The dependent function type Πx :A. B is written as (x:A) -> B in Agda’s syntax.

Agda supports inductive families, which are essentially inductively defined data types

indexed by terms [23]. Their constructors may return elements in an arbitrary type of the

indexed family. Example 3.1.1 shows the definition of Fin, the inductive family of finite

sets.

Example 3.1.1. Fin is a data type indexed by natural numbers (Nat) such that there are

exactly n valid expressions of type Fin n. Given a natural number n, fzero constructs an

element of type Fin n+1; given a natural number n and an element of type Fin n, fsuc

12

constructs an element of type Fin n+1.

data Fin : Nat -> Set0 where

fzero : (n : Nat) -> Fin (n + 1)

fsuc : (n : Nat) -> Fin n -> Fin (n + 1)

GADTs can be considered as a limited version of inductive families that can only be

indexed by types. In general, inductive families are defined in the following form.

data D : (y1 : T1) -> · · · -> (yn : Tn) -> Setd where

c1 : A1

c2 : A2

· · ·

D is an inductive family in Setd indexed by terms of type T1, · · · , Tn. For each constructor ci,

it takes a number of arguments (zi:Si) and constructs an element of type (D t1 · · · tn),

where each ti is an expression of type Ti. Concretely, each Ai takes the form of

(z1 : S1) -> · · · -> (zm : Sm) -> (D t1 · · · tn).

Note that arguments to D and c are dependently typed – Ti+1 could mention y1 · · · yi, and
Si+1 could mention z1 · · · zi. Also, y1 · · · yn are not bound in Ai.

Not all inductive definitions are consistent – some contain impredicative constructors (the

constructor’s universe is larger than the data type’s), and some admit non-terminating

functions. These definitions are sources of paradoxes, which Agda excludes by performing

a universe check and a positivity check on inductive definitions. Take the data type D

defined above as an example, it must satisfy two additional conditions:

• Types of its constructors must fit in the universe of D.

• D must occur strictly positively in types of its constructor’s arguments.

Concretely, the universe of every argument type Si (the type of Si) should be smaller than

Setd to pass the universe check. Having strict positivity means that constructors cannot

return self-indexing types like (D (D · · ·) · · ·), and every argument type Si must either:

• not mention D at all.

• mention D in the form of Si = (x1:C1) -> · · · -> (xk:Ck) -> D, where D does not

occur in any Cj (arguments to D omitted).

The requirements for strict posivitity and universes are shared across many dependently-

typed languages that support inductive families, like Coq’s Gallina [24] or Timany and

Sozeau’s pCuIC [25].

13

3.2 Failure to defunctionalize

In this section, I illustrate that it is impossible to adapt the method of performing

polymorphic defunctionalization to dependently-typed languages using inductive families.

Chapter 2 illustrated that type-preserving defunctionalization can be done with ADTs for

simple types and GADTs for polymorphic types. In polymorphic defunctionalization, a

function of type a -> b is translated to a constructor of a GADT lam, and the constructor’s

return type is (a, b) lam (see Example 2.1.3). Similarly, we can try to define an inductive

family Pi, and translate each dependent function of type Πx :A. B to a constructor of Pi

A B (suppose that Pi has a way of encoding B’s dependency on terms of type A).

Suppose the source language is CC and the target language is Agda. Let [[−]] denote

the defunctionalization transformation. I assume that [[λx :A. e]] = Fun, i.e. [[−]] turns

a function in source to a unique constructor Fun of an inductively defined data type in

target, and each free variable in λx :A. e corresponds to an argument to Fun.

Ideally, [[−]] should be type-preserving – well-typed source programs are translated to well-

typed target programs. Clearly, the hypothesis of having a type-preserving transformation

where [[Πx :A. B]] = Pi [[A]] [[B]] does not hold, since it translates functions of type

A → (A → A) to constructors returning Pi [[A]] (Pi [[A]] [[A]]), which fails the positivity

check for inductive definitions. In fact, we cannot translate Πx :A. B to an element of

any inductive family in a type-preserving way. I proof this with the help of the following

lemma.

Lemma 3.2.1 (Universe Preservation). Type-preserving transformation [[−]] turns a

universe in CC to a universe in Agda and it preserves the universe hierarchy.

Proof. We have · ⊢ 0 :Nat :U0 :U1 : · · · in CC (with freely-introduced natural numbers as

a base type). To satisfy type preservation, we must have [[0]] : [[Nat]] : [[U0]] : [[U1]] : · · · in the

target language. Therefore, [[U0]], [[U1]], · · · are universes (since they are the types of types)

and they form a universe hierarchy in the target language.

By universe preservation, for all CC expression e1, e2, if e1 is in a higher universe than e2:

Γ ⊢ e1 :A, Γ ⊢ A :Um,

Γ ⊢ e2 :B, Γ ⊢ B :Un (m > n),

then [[e1]] will also be in a higher universe than [[e2]] in Agda.

[[e1]] : [[A]], [[A]] :Seti,

[[e2]] : [[B]], [[B]] :Setj (i > j).

14

Now, I proof that type-preserving defunctionalization cannot be defined using inductive

families.

Theorem 3.2.2. If [[−]] is type-preserving, then [[Πx :A. B]] cannot be an element of any

inductive family.

Proof. Assume that [[−]] is type-preserving, [[Πx :A. B]] is an element of an inductive family

D, and Γ ⊢ Πx :A. B : Um. Assume [[Um]] = Setn, which is reasonable by Lemma 3.2.1.

Data type D must have the following general form.

data D : (y1 : T1) -> · · · -> (yn : Tn) -> Setn

D is in universe Setn because [[−]] is type preserving. Pick an arbitrary function f in the

source language and suppose that its type is Πx :A. B. By assumption, [[f]] = Fun, which

is a valid constructor of D. The general form of Fun is

Fun : (z1 : S1) -> · · · -> (zm : Sm) -> (D t1 · · · tn)

where each (zi:Si) corresponds to a free variable in f . Since Fun is a valid constructor,

the universe of each Si must be smaller than Setn to pass the universe check. However,

this is not true in general: f may contain free variables from universes higher than Um,

which are translated to terms in universes higher than Setn, by Lemma 3.2.1. Therefore,

we have a contradiction.

A type-preserving transformation cannot take [[Πx :A. B]] = Pi [[A]] [[B]], since some results

of this translation fail the positivity check. Theorem 3.2.2 shows that no inductive family

can be used for type-preserving defunctionalization, and the key problem is the universe

check that forbids impredicative constructors. If a function contains free variables in

universes higher than the universe of the function’s type, this function will be translated

to a constructor that takes arguments in universes higher than the universe of its inductive

family, which fails the universe check. Previous defunctionalization methods relied on the

fact that any type can be an argument to a constructor, which is impredicative in nature.

15

Chapter 4

Abstract defunctionalization

This chapter presents my work on abstract defunctionalization. Abstract defunctionalization

consists of the target language, the Defunctionalized Calculus of Constructions (DCC),

and a type-preserving defunctionalization transformation from the source language (CC)

to DCC.

Section 4.1 introduces abstract defunctionalization and informally explains the design

of DCC and the transformation. Section 4.2 presents the formal definition of DCC and

Section 4.3 defines the defunctionalization transformation.

4.1 Main ideas

Abstractly speaking, defunctionalization is a transformation that eliminates functions by

replacing them with a special kind of first-class value, which I refer to as labels. Each

source-program function uniquely corresponds to a label in the target program. A label

carries a list of values assigned to its corresponding function’s free variables, similar to

a function closure with the closure environment. The transformation turns applications

of functions to arguments into applications of labels to (transformed) arguments, and it

provides a mechanism for evaluating label applications.

Concretely, Pottier and Gauthier’s polymorphic defunctionalization uses constructors of a

generalized abstract data type (GADT) as labels, and the mechanism for evaluating label

applications is an auxiliary apply function. Chapter 3 discussed an attempt of adapting

this method to the dependently-typed world using inductive families (the counterpart

of GADTs in dependently-typed languages) as labels. This turned out to be a failure,

because constructors of inductive families cannot accept arguments from universes higher

than the universe of the inductive definition, but functions could contain free variables

from arbitrarily high universes.

16

One alternative approach is to design a target language with a primitive notion of labels

that fits the abstract description of defunctionalization. Defining abstract transformations

with specialized target languages is a common approach in the literature. For example,

Minamide et al. presented a type-preserving closure conversion from the simply-typed

lambda calculus to a typed intermediate language with closures as first-class values [26].

They named this method abstract closure conversion, and Bowman and Ahmed adapted it

to dependently-typed closure conversion [11].

Abstract defunctionalization takes inspiration from works of Minamide et al. and Bowman

and Ahmed. It consists of a target language, the Defunctionalized Calculus of Constructions

(DCC), and a type-preserving transformation from CC into it. Before formally presenting

DCC’s syntax and type judgements, I give an informal explaination of its key features and

the intuition behind them. I write DCC expressions in a san-serif blue font to distinguish

them from the source language expressions.

DCC is a language similar to CC, except that its syntax contains first-class function labels

instead of lambda abstractions. The syntax of a label L{e1, · · · , en} consists of a label

name (L) and a list of free-variable terms it carries ({e1, · · · , en}). DCC also provides

label contexts as the mechanism for evaluating label applications. These contexts contain

elements in the following form.

L 7→ ({x1 :A1, · · · , xn :An}, Pi(x,A,B), e)

If L corresponds to a function f in the source language, then {x̄ : Ā}, Pi(x,A,B), and e

correspond to the types of free variables in f , f ’s type, and f ’s body respectively. Applying

a label to an argument evaluates to e with all the free-variable terms substituted in.

For example, the label context associated with the defunctionalized natural-number

addition function λx :Nat. (λy :Nat. x+ y) is the following.

L1 7→ ({x :Nat}, Pi(y,Nat,Nat), x+ y),

L0 7→ ({}, Pi(x, Nat, Pi(y,Nat,Nat)), L1{x})

Informally, this label context says that L0 corresponds to a function that has no free

variables and has the type Πx :Nat.Πy :Nat. Nat. Given an input x, it returns another

function whose free variable is assigned with the value of x. The interpretation for L1 is

similar.

The reader might find the resemblance between DCC and defunctionalized programs

in OCaml. Intuitively, a label term L{e1, · · · , en} is just like a constructor and all the

arguments it takes (Fun e1 · · · en), and the label context is like the pattern-matching

17

cases of the apply function. The difference is that a function’s type, the types of its

free variables, and the function body are encoded implictly in the type of Fun and the

definition of apply, whereas DCC places them explicitly in the label context.

4.2 Defunctionalized Calculus of Constructions (DCC)

This section presents the formal definition of the Defunctionalized Calculus of Construc-

tions.

4.2.1 Syntax

DCC is a language similar to CC, except that its syntax (Figure 4.1) contains first-class

function labels instead of lambda abstractions. DCC has an infinite hierarchy of predicative

universes Ui, and its term expressions are: variables x (from an infinite set of variable

names), universes U, Π-types Pi(x,A,B), applications Apply e1 e2, and labels L{ē}. I omit

base types for simplicity. Except for labels, all term expressions in DCC are the same as

their counterparts in CC (only written down in a different way).

A label expression L{ē} is a label name L supplied with a list of terms e1, · · · , en assigned

to its free variables. Labels can take zero free variables, but a label name by itself is not a

term. In other words, L is not a term, but L{} is. I write ē as an abbreviation of a list

of zero or more expressions. Label names L1,L2, · · · come from an infinite set of names

which is disjoint to the set of variable names, and I write labels in a different font from

variables to emphasise this.

A DCC context D ;Γ consists of a context Γ for types and a context D for label definitions.

The type context is a list of variable-expression pairs. The label context is a list of label

names L and their associated data ({x̄ : Ā}, Pi(x,A,B), e). The first part {x̄ : Ā} records the

types of free variables the label takes. The second part Pi(x,A,B) specifies the type of the

label, and the third part e is what the label reduces to when it is applied to an argument.

I use x̄ : Ā as a syntactic sugar for x1 :A1, · · · , xn :An. Note that Ai+1 could depend on

x1, · · · , xi, and the list of free variables can be empty. Variables x̄ are bound to A, B, and

e; the variable x in the second part Pi(x,A,B) is bound to both B and e.

Substitutions for variables, universes, Π-types and applications in DCC follow the conven-

tional definition. Substitutions for labels are:

L{ē}[e/x] ≜ L{ē[e/x]},

where ē[e/x] is a syntactic sugar for e1[e/x], · · · , en[e/x].

18

Universes U ::= Ui

Expressions e, A, B ::= x | U | Pi(x,A,B) | Apply e1 e2 | L{ē}

Type contexts Γ ::= · | Γ, x :A

Label contexts D ::= · | D, L 7→ ({x̄ : Ā}, Pi(x,A,B), e)

DCC contexts D ;Γ

Figure 4.1: DCC syntax

4.2.2 Type judgements

DCC’s type judgements are of the form D ;Γ ⊢ e :A, and typing rules are given in Figure 4.2.

Rules for variables, universes, Π-types, applications, and conversion are identical to their

counterpart rules in CC, so I focus on the rule for labels. A label term L{ē} is well-typed

in D ;Γ the following conditions are satisfied.

1. The context D ;Γ is well-formed.

2. Label L is present in D and it associates with ({x̄ : Ā}, Pi(x,A,B), e).

3. The length of the two lists ē and x̄ : Ā are equal.

4. All expressions in ē are well-typed, and their types match the specified types of free

variables Ā.

Specifically, condition (4) means:

D ;Γ ⊢ e1 :A1,

D ;Γ ⊢ e2 :A2[e1/x1],

· · ·

D ;Γ ⊢ en :An[e1/x1, · · · , en−1/xn−1].

Each Ai+1 depends on x1, · · · , xi, so e1, · · · , ei need to be substituted in Ai+1 in the type

judgement for ei+1. The type of D ;Γ ⊢ e :A is

Pi(x,A[ē/x̄],B[ē/x̄]).

Note that values of free variables ē are substituted in Pi(x,A,B), the specified type of the

label. I use [ē/x̄] as a syntactic sugar of [e1/x1, · · · , en/xn], and conditions (3) and (4) are

abbreviated to D ;Γ ⊢ ē : Ā as a convention.

The DCC judgement for well-formed contexts is ⊢ D ;Γ and the judgement for well-formed

label contexts is ⊢ D. Their derivation rules are given in Figure 4.3. A well-formed label

19

x :A ∈ Γ ⊢ D ;Γ

D ;Γ ⊢ x :A
(Var)

⊢ D ;Γ

D ;Γ ⊢ Ui :Ui+1
(Universe)

D ;Γ ⊢ A :Ui D ;Γ, x :A ⊢ B :Uj

D ;Γ ⊢ Pi(x,A,B) : Umax(i, j)
(Pi)

D ;Γ ⊢ e1 : Pi(x,A,B) D ;Γ ⊢ e2 :A

D ;Γ ⊢ Apply e1 e2 : B[e2/x]
(Apply)

⊢ D ;Γ D ;Γ ⊢ ē : Ā

L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈ D

D ;Γ ⊢ L{ē} : Pi(x,A[ē/x̄],B[ē/x̄])
(Label)

D ;Γ ⊢ e :A D ;Γ ⊢ B :U D ;Γ ⊢ A ≡ B

D ;Γ ⊢ e :B
(Equiv)

Figure 4.2: DCC Typing

⊢ D (WF-Empty)⊢ D ; ·
D ;Γ ⊢ A :U

(WF-Type)⊢ D ;Γ, x :A
(WFL-Empty)⊢ ·

D ;Γfv ⊢ Pi(x,A,B) : U D ;Γfv, x :A ⊢ e :B
(WFL-Label)

⊢ D, L 7→ ({x̄ : Ā}, Pi(x,A,B), e)
where Γfv ≜ ·, x̄ : Ā

Figure 4.3: Well-formedness of DCC contexts and label contexts

context with an empty type context is a well-formed DCC context (WF-Empty). If D ;Γ is

well-formed and A is a valid type in it, then D ;Γ, x :A is also well-formed (WF-Type).

For label contexts, the empty context is well-formed (WFL-Empty). A label context

extended with a new entry L 7→ ({x̄ : Ā}, Pi(x,A,B), e) is well-formed if L is not present in

D, Pi(x,A,B) is a valid type in D ;Γfv, and the type of e is B in D ;Γfv, x :A (WFL-Label).

Here, Γfv is the free-variable type context formed by the label’s free variables, defined as

Γfv = ·, x̄ : Ā. Note that the well-formedness rules implicitly specify that expressions in Γ

may refer to labels in D, but expressions in D cannot refer to variables in Γ.

Both the type context and the label context have the weakening property – a well-typed

term is still well-typed in an extended type or label context.

Lemma 4.2.1 (Type weakening). If D ;Γ ⊢ e :A and D ;Γ ⊢ B :U, then D ;Γ, x :B ⊢ e :A.

Lemma 4.2.2 (Label weakening). If D ;Γ ⊢ e :C, D ;Γfv ⊢ Pi(x,A,B) : U, and

D ;Γfv, x :A ⊢ e′ :B, then (D, L 7→ ({x̄ : Ā}, Pi(x,A,B), e′)) ;Γ ⊢ e :C.

20

D ;Γ ⊢ Apply L{ē} e2 ▷ e1[ē/x̄, e2/x] (Beta)

where L 7→ ({x̄ : Ā}, Pi(x,A,B), e1) ∈ D

D ;Γ ⊢ e1 ▷
∗ e D ;Γ ⊢ e2 ▷

∗ e

D ;Γ ⊢ e1 ≡ e2
(Eq-reduce)

D ;Γ ⊢ e1 ▷
∗ L{ē} D ;Γ ⊢ e2 ▷

∗ e′2

L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈ D

D ;Γ, x :A[ē/x̄] ⊢ e[ē/x̄] ≡ Apply e′2 x

D ;Γ ⊢ e1 ≡ e2
(Eq-Eta1)

D ;Γ ⊢ e1 ▷
∗ e′1 D ;Γ ⊢ e2 ▷

∗ L{ē}
L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈ D

D ;Γ, x :A[ē/x̄] ⊢ Apply e′1 x ≡ e[ē/x̄]

D ;Γ ⊢ e1 ≡ e2
(Eta2)

Figure 4.4: DCC reduction and equivalence

DCC’s reductions D ;Γ ⊢ e1 ▷ e2 and equivalence D ;Γ ⊢ e1 ≡ e2 are defined in Figure 4.4.

There is only one reduction rule in DCC: Apply L{ē} e2 reduces to e1[ē/x̄, e2/x], where e1

is found in the label’s associated data L 7→ ({x̄ : Ā}, Pi(x,A,B), e1) in the label context D.

A reduction sequence is noted as e1 ▷
∗ e2, which means e1 reduces to e2 in zero or more

steps.

Two terms e1 and e2 are equivalent if they both reduce to the same term e in a reduction

sequence or they are η-equivalent. DCC’s η-equivalence rules are similar to that of CC.

Rule (Eq-Eta1) defines that e1 and e2 are equivalent if they satisfy the following conditions.

1. e1 reduces to a label L{ē} in a reduction sequence.

2. e2 reduces to some expression e′2 in a reduction sequence.

3. L associates with ({x̄ : Ā}, Pi(x,A,B), e) in the label context D.

4. Apply e′2 x is equivalent to e[ē/x̄] in D ;Γ, x :A.

Rules (Eq-Eta1) and (Eq-Eta2) are symmetrical.

4.3 Transformation

This section gives the definition of dependently typed defunctionalization transforma-

tion. The transformation consists of two parts: a transformation [[−]] for terms and

a meta-function [[−]]d that extracts function definitions from the source program. The

21

Γ ⊢ x :A ; x
(T-Var)

Γ ⊢ Ui :Ui+1 ; Ui
(T-Universe)

Γ ⊢ A :Ui ; A Γ, x :A ⊢ B :Uj ; B

Γ ⊢ Πx :A. B : Umax(i,j) ; Pi(x,A,B)
(T-Pi)

Γ ⊢ e1 :Πx :A. B ; e1 Γ ⊢ e2 :A ; e2
Γ ⊢ e1 e2 : B[e2/x] ; Apply e1 e2

(T-Apply)

FV(λix :A. e) = x̄ : Ā Γ ⊢ x̄ : Ā ; x̄

Γ ⊢ λix :A. e : Πx :A. B ; Li{x̄}
(T-Lambda)

Γ ⊢ e :A ; e

Γ ⊢ e :B ; e
(T-Equiv)

Figure 4.5: Defunctionalization transformation

term transformation produces the target program and the meta-function [[−]]d gives a

label context, which functions similarly to the auxiliary function apply in polymorphic

defunctionalization.

4.3.1 Term transformation

The term transformation [[−]] turns expressions in CC into expressions in DCC. I define the

transformation with a new judgement of the form Γ ⊢ e :A ; e, and [[e]] ≜ e. Figure 4.5

gives the derivation rules of this judgement.

The term transformation simply transcribes the variables, universes, Π-types, applications,

and base types and values in CC to their counterparts in DCC compositionally. Functions

in the source language are translated into labels in the target language.

Defunctionalization requires a unique correspondence between each label and each source-

program function. I use a convention that every function in the transformation’s input

e is tagged with a unique identifier i (i ∈ N), and its corresponding label’s name is Li

(α-equivalent functions get the same tag).

The transformation turns a function (λix :A. e) into a label Li{x̄}, where x̄ come from

the function’s free variables x̄ (T-Lambda). The meta-function FV (see Definition 4.3.1)

computes all free variables and their types involved in a well-typed CC-expression. Note

that FV is different from fv, the conventional free variable function that computes all

the unbound variables in an expression. In dependently typed languages, the type of a

free variable may contain other free variables, and their types may still contain other free

variables, and so on! Therefore, FV(e) must recursively work out all the variables needed

22

for e to be well-typed.

Definition 4.3.1. FV(e) takes Γ ⊢ e :A, the type judgement of e, as an implicit argument.

It firstly computes all the unbound variables x1, · · · , xn in e and in A, then calls itself

recursively on types of these variables, and finally returns the union of all free variables

and their types it found.

FV(e) = FV(A1) ∪ · · · ∪ FV(An) ∪ Γfv

where fv (e) ∪ fv (A) = x1, · · · , xn

Γ ⊢ x1 :A1, · · · ,Γ ⊢ xn :An

Γfv ≜ x1 :A1, · · · , xn :An.

Here, the union of two type contexts Γ1∪Γ2 is Γ1 appended with all the variable-expression

pairs x :A that only appear in Γ2 in the order of their apperence. Variable x would always

be paired with the same expression A in Γ1 and Γ2 in this usage, because all pairs x :A in

Γ1 and Γ2 come from the same context Γ. Since FV(e) gives all the variables needed to

correctly type e, Γ ⊢ e :A implies that FV(e) ⊢ e :A.

Lemma 4.3.2. If Γ ⊢ e :A, then FV(e) ⊢ e :A.

4.3.2 Extracting function definitions

Defunctionalization is not complete with just the term transformation which turns functions

into labels but throws away the function body. The meta-function [[−]]d takes a CC-

expression and returns a label context D. For every function (λix :A. e) in the source

program, D contains the implementation of that function as an item in the following form,

where {x̄ : Ā}, Pi(x,A,B), and e correspond to the free variables (x̄ : Ā) in λi, the type of λi

and the function body e respectively.

Li 7→ ({x̄ : Ā}, Pi(x,A,B), e)

Function extraction is more subtle than transforming terms. Functions may appear in

the type of an expression, even if the expression itself does not contain that function!

For example, consider the following CC context and expression (with base type natural

numbers Nat).

Γ ≜ ·, A : (Nat → Nat) → U0, a : Πf : (Nat → Nat). A (λn :Nat. (f n) + 1)

e ≜ a (λx :Nat. x+ 1)

23

Γ ⊢ A :U ;d D

Γ ⊢ x :A ;d D
(D-Var)

Γ ⊢ Ui :Ui+1 ;d ·
(D-Universe)

Γ ⊢ A :Ui ;d DA Γ, x :A ⊢ B :Uj ;d DB

Γ ⊢ Πx :A. B : Umax(i,j) ;d DA ∪DB
(D-Pi)

Γ ⊢ e1 : Πx :A. B ;d D1 Γ ⊢ e2 :A ;d D2

Γ ⊢ B[e2/x] : U ;d D3

Γ ⊢ e1 e2 : B[e2/x] ;d D1 ∪D2 ∪D3
(D-Apply)

Γ ⊢ A :U ;d DA Γ, x :A ⊢ e :B ;d De

FV(λix :A. e) = x̄ : Ā Γ ⊢ x̄ : Ā ; x̄ : Ā
Γ ⊢ Πx :A. B ; Pi(x,A,B) Γ, x :A ⊢ e ; e

Γ ⊢ λix :A. e : Πx :A. B ;d

DA ∪De, Li 7→ ({x̄ : Ā}, Pi(x,A,B), e)

(D-Lambda)

Γ ⊢ e :A ;d D Γ ⊢ B :U ;d DB

Γ ⊢ e :B ;d D ∪DB
(D-Equiv)

Figure 4.6: Extracting function definitions

A is a family of types indexed by functions of type Nat → Nat and a f constructs an

element of type A (λn :Nat. (f n) + 1). According to the rule (Apply), the type of e is

(A (λn :Nat. (f n) + 1))[(λx :Nat. x+ 1)/f]

=A (λn :Nat. ((λx :Nat. x+ 1) n) + 1).

Hence, a new function definition appeared in the type of e as the result of a substitution!

This new function should be included in the label context D to achieve type preservation.

Extracting function definitions in e involes finding every function that appeared in the

type derivation of e. In other words, the transformation defunctionalizes not just the

source-language expression, but its entire type derivation tree.

I define [[−]]d with a new judgement of the form Γ ⊢ e :A ;d D, and [[e]]d ≜ D. Figure 4.6

gives the derivation rules of this judgement.

Variables do not contain function definitions, so the definitions in x are just the definitions

in its type A (D-Var). Type derivations of universes do not involve functions at all (D-

24

Universe). Definitions in a dependent function type Πx :A. B are the union of definitions

in A and B (D-Pi). The union here is defined in the same way as the union of contexts

(see Definition 4.3.1), and there is no ambiguity since different functions correspond to

different label names.

Definitions in an application e1 e2 are the union of definitions in e1, e2, and B[e2/x],

since substitution creates new function definitions (D-Apply). For a lambda abstraction

λix :A. e, the definitions it contains are the union of definitions in e and A appended

with Li, the definition of itself (D-Lambda). If e has type B by the conversion rule, then

the definitions involved in the derivation of Γ ⊢ e :B are the union of definitions in the

derivation of Γ ⊢ e :A and definitions in B (D-Equiv).

I define the subset relation of label contexts, which helps to state definitions and theorems

in the remainder of this dissertation.

Definition 4.3.3. For two well-formed label contexts D1 and D2, D1 ⊆ D2 if for all

Li 7→ ({x̄ : Ā}, Pi(x,A,B), e) in D1, Li 7→ ({x̄ : Ā}, Pi(x,A,B), e) is also in D2.

The notion of subsets gives a stronger weakening property to DCC: a well-typed term is

still well-typed in a larger label context.

Lemma 4.3.4 (Label context weakening (subsets)). If D1 ;Γ ⊢ e :A, ⊢ D2, and D1 ⊆ D2,

then D2 ;Γ ⊢ e :A.

Since the transformation defunctionalizes the entire type derivation tree of a term, if

Γ ⊢ e :A, then all elements in [[A]]d are also in [[e]]d. This property requires a proof as it is

not immediately obvious from the definition that this is true for case (D-Lambda).

Lemma 4.3.5. For all well-typed terms Γ ⊢ e :A in CC, [[A]]d ⊆ [[e]]d.

Proof. By induction on rules defined in Figure 4.6. All cases except (D-Lambda) are either

trivially true or follows simply from the definition.

The goal in case (D-Lambda) is to show that [[Πx :A. B]]d ⊆ [[λix :A. e]]d. By assumption,

Γ ⊢ λix :A. e :Πx :A. B ;d DA ∪De, Li 7→ ({x̄ : Ā}, Pi(x,A,B), e).

In other words, [[λix :A. e]]d = [[A]]d∪[[e]]d with definition of λi appended to it. By definition,

[[Πx :A. B]]d = [[A]]d ∪ [[B]]d, and hence [[A]]d ⊆ [[λix :A. e]]d. We have [[B]]d ⊆ [[e]]d by the

induction hypothesis, since Γ, x:A ⊢ e :B. Therefore, [[B]]d ⊆ [[λix :A. e]]d.

The term transformation and the process of extracting function definitions ([[−]] and [[−]]d)

25

act pointwise on CC contexts. In other words,

[[·]] ≜ ·, [[Γ, x :A]] ≜ [[Γ]], x : [[A]],

[[·]]d ≜ ·, [[Γ, x :A]]d ≜ [[Γ]]d ∪ [[A]]d.

Finally, I give an example of dependently typed defunctionalization to illustrate that the

transformation is type-preserving and correct.

Example 4.3.1. Let the source program p be the an application of the polymorphic

identity function in CC (see Example 2.2.1), and the lambda abstrctions are tagged with

natural numbers.

p ≜ (λ0A :U0. (λ
1x :A. x)) Nat 1

· ⊢ p : Nat

· ⊢ p ▷ (λx :Nat. x) 1 ▷ 1

The source program is a function with no free variables applied to the base type Nat and

then to 1. So, the term transformation is a label supplied with no free-variable terms

applied to Nat and then to 1.

[[p]] = Apply (Apply L0{} Nat) 1

There are two function definitions (λ0 and λ1) in the derivation tree of the source program.

Function λ1 has one free variable A of type U0; its type is A → A and its function body is

x. Function λ0 has no free variable; its type is ΠA :U0. A → A and its function body is

λ1 where its free variable A is assigned with the value of the input of λ0. Therefore, [[p]]d
returns the following label context with two items.

D = · , L1 7→ ({A :U0}, Pi(x,A,A), x),

L0 7→ ({}, Pi(A, U0, Pi(x,A,A)), L1{A})

If the transformation is type preserving and correct, the type of [[p]] should be Nat and

it should reduce to 1 (in context D ; ·). By (Apply), the type of (Apply L0{} Nat) is

(Pi(x,A,A))[Nat/A] = Pi(x,Nat,Nat). So, the type of [[p]] is Nat. Also,

D ; · ⊢ Apply (Apply L0{} Nat) 1 ▷ Apply L1{Nat} 1 ▷ 1.

26

Chapter 5

Type preservation, correctness, and

consistency

In this chapter, I show that abstract defunctionalization is type preserving and correct

(Section 5.1), and the target language DCC is type-safe and consistent (Section 5.2). For

simplicity, I use Γ, e to stand for [[Γ]], [[e]] and DΓ,De to stand for [[Γ]]d, [[e]]d when there is

no ambiguity.

5.1 Correctness and type preservation

As shown in Example 4.3.1, it is easy to verify correctness and type preservation for

a particular example program, but it is more difficult to prove that they hold for the

transformation itself. Firstly, I give the definition of the correctness of the transformation.

Definition 5.1.1. Dependently typed defunctionalization is correct if for all base types A

and values v of type A,

· ⊢ e :A ∧ · ⊢ e ▷∗ v =⇒ (DΓ ∪De) ; · ⊢ e ▷∗ v′ where v′ ≡ v.

In other words, if a closed program e evaluates to a base-type value v, then e evaluates

to a base-type value v′ that is equivalent to v. Ideally, this follows as a corollary of the

preservation of reduction sequences.

Definition 5.1.2. Dependently typed defunctionalization preserves reduction sequences if

Γ ⊢ e1 ▷∗ e2 =⇒ (DΓ ∪De1 ∪De2) ;Γ ⊢ e1 ▷∗ e,

where (DΓ ∪De1 ∪De2) ;Γ ⊢ e ≡ e2.

27

Ideally, I could show this property by showing that the transformation preserves all small-

step reductions Γ ⊢ e1 ▷ e2, followed by an induction on the number of reduction steps

in a sequence. However, CC’s meta-language substitution (λx :A. e1)[e2/y] creates a new

function definition when it substitutes an expression into a free variable of a function. So,

for a reduction sequence e1 ▷ · · · ▷ en in CC, some ei may contain function definitions that

are not exist in e1 or en. This means that not all ei translate into well-typed DCC terms ei

in (DΓ ∪De1 ∪Den) ;Γ, which makes proofs by induction difficult. Moreover, preservation

of reduction sequences is a key lemma for showing type preservation, since CC’s typing

rules involve equivalence and the equivalence rule (Eq-reduce) is defined with reductions.

Fortunately, meta-theoretic substitution is the only source of creating new function

definitions in CC’s reduction sequences. There would be no problem if the source language

does not evaluate substitutions into functions but keeps them as primitive expressions

instead. To use this observation formally, I define a helper language CCS, which is an

extension of CC with explicit substitutions [27]. In addition, this language does not reduce

substitutions of expressions into functions.

Since CCS extends CC, every CC expression is trivially a CCS expression. I denote

this trivial transformation from CC to CCS as σ. Then, I define the defunctionalization

transformation from CCS to DCC in a similar way as that from CC to DCC – a term

transformation [[−]] and a meta-function [[−]]d for extracting definitions. Next, I show that

σ and defunctionalization for CCS preserve reduction sequences and they commute with

the transformation from CC into DCC. As a corollary, defunctionalization from CC to

DCC preserves reduction sequences. In other words, I show that the following diagram

commutes for all CC-terms e1 and e2 (contexts omitted).

e1 e2

e1 e e2

e1 e e2

σ

[[−]]

▷∗

σ

[[−]]
▷∗

[[−]]

≡

[[−]] [[−]]

▷∗ ≡

(5.1)

CCS is an extension of CC with new syntax, type derivation rules, reduction rules, and

equivalence rules (Figure 5.1). I write CCS expressions in a teal,mathematical font to

avoid ambiguity. CCS extends the CC syntax with syntactic substitutions of the form

e1{x 7→ e2}.

Type rules for variables, universes, Π-types, functions, and equivalence in CCS are the same

as the standard rules in CC, except that the type of an application e1 e2 is B{x 7→ e2}
with the syntactic substitution. The type of a substitution e1{x 7→ e2} is the type of e1

28

with x substituted by e2 (Subst).

CCS has five rules (those prefixed with Sub-) that reduce substitutions, which are the

standard meta-theoretic substitution rules for variables, universes, Π-types, and appli-

cations being internalised into the language. Note that the meta-theoretic substitution

in the CC’s original beta-reduction rule (λx :A.e1) e2 ▷ e1{x 7→ e2} is also replaced by

the syntactic one. CCS does not reduce substitutions into functions, but it β-reduces

them when they are applied to arguments (Beta-Sub). I write e{x1 7→ e1, x2 7→ e2} for a

substitution followed by another substitution (e{x1 7→ e1}){x2 7→ e2}, and e{ȳ 7→ ē} for a

sequence of substitutions (((e{y1 7→ e1}){x2 7→ y2}) · · ·){yn 7→ en}.

CCS has standard equivalence rules (Eq-reduce), (Eq-Eta1), and (Eq-Eta2), defined in

the same way as those rules in are CC. Apart from that, it has two new symmetric rules

(Eq-SubEta1) and (Eq-SubEta2) for determining when a sequence of substitutions into

a function (λx :A.e){ȳ 7→ ē} is equivalent to another expression. This is essentially a

variant of the η-equivalence rules that is compatible with substitutions – (λx :A.e){ȳ 7→ ē}
is equivalent to e2 if applying e2 to x is equivalent to the function body e with ȳ being

substituted for ē.

Now, I define the defunctionalization transformation from CCS to DCC, which is the

transformation from CC to DCC extended with the following two rules. I use [[−]] and

[[−]]d to stand for the term transformation and the metafunction for extracting function

definitions, and I apply the convention of tagging lambdas with unique identifiers i (i ∈ N)
as usual.

Γ, x :A ⊢ e1 :B ; e1 Γ ⊢ e2 :A ; e2
Γ ⊢ e1{x 7→ e2} :B{x 7→ e2} ; e1[e2/x]

(T-Subst)

Γ, x :A ⊢ e1 :B ;d D1 Γ ⊢ e2 :A ;d D2

Γ ⊢ e1{x 7→ e2} :B{x 7→ e2} ;d D1 ∪D2
(D-Subst)

The transformation turns a syntactic substitution in CCS into a meta-theoretic substitution

in DCC (T-Subst); the function definitions in a substitution e1{x 7→ e2} are the union of

the definitions in e1 and e2 (D-Subst). Since substitutions into functions do not reduce

in CCS, the transformation from it into DCC have the following strong properties by

definition, which are not true for the transformation from CC into DCC.

Γ ⊢ e1 ▷∗ e2 =⇒ [[e2]]d ⊆ [[Γ]]d ∪ [[e1]]d (5.2)

[[e1{x 7→ e2}]] = [[e1]][[[e2]]/x]. (5.3)

Next, I show that the transformation preserves small step reductions in CCS – if a CCS

program e1 reduces to e2 in one step, then the translated program e1 evaluates to e2 in a

sequence.

29

Expressions :: = · · · | e1{x 7→ e2}

Γ ⊢ e1 :Πx :A.B Γ ⊢ e2 :A

Γ ⊢ e1 e2 :B{x 7→ e2}
(Apply)

Γ, x :A ⊢ e1 :B Γ ⊢ e2 :A

Γ ⊢ e1{x 7→ e2} :B{x 7→ e2}
(Subst)

x{y 7→ e} ▷ x (Sub-Var1)

x{x 7→ e} ▷ e (Sub-Var2)

Ui{x 7→ e} ▷ Ui (Sub-Universe)

(e1 e2){x 7→ e} ▷ (e1{x 7→ e}) (e2{x 7→ e}) (Sub-Apply)

(Πx :A.B){y 7→ e} ▷ Πx :A{y 7→ e}.B{y 7→ e} (Sub-Pi)

(λx :A.e1) e2 ▷ e1{x 7→ e2} (Beta)

((λx :A.e1){ȳ 7→ ē}) e2 ▷ e1{ȳ 7→ ē, x 7→ e2} (Beta-Sub)

e1 ▷
∗ (λx :A.e){ȳ 7→ ē} e2 ▷

∗ e′2

Γ, x :A{ȳ 7→ ē} ⊢ e{ȳ 7→ ē} ≡ e′2 x

Γ ⊢ e1 ≡ e2
(Eq-SubEta1)

e2 ▷
∗ (λx :A.e){ȳ 7→ ē} e1 ▷

∗ e′1

Γ, x :A{ȳ 7→ ē} ⊢ e′1 x ≡ e{ȳ 7→ ē}
Γ ⊢ e1 ≡ e2

(Eq-SubEta2)

Figure 5.1: New syntax and rules in CCS

30

Lemma 5.1.3 (Preservation of small step reductions). If Γ ⊢ e1 ▷e2, then [[Γ]]d∪ [[e1]]d ;Γ ⊢
e1 ▷∗ e2.

Proof. By induction on the reduction rules of CCS. All cases are trivial except for the two β-

reduction rules. In case (Beta), the assumption is (λix :A.e1) e2 ▷ e1{x 7→ e2}, and the goal

is to show that D ;Γ ⊢ Apply Li{x̄} e2 ▷∗ e1[e2/x], where D = [[Γ]]d∪ [[e1]]d and x̄ corresponds

to the free variables in λi. By definition of [[−]]d, we have Li 7→ ({x̄ : }, , e1) ∈ D (ignoring

type information). So, D ;Γ ⊢ Apply Li{x̄} e2 ▷ e1[x̄/x̄, e2/x] = e1[e2/x]. Rule (Beta-Sub)

follows similarly.

The transformation preserves sequences of reductions, and the proof follows from a trivial

induction on the number of small steps in the sequence.

Lemma 5.1.4 (Preservation of reduction sequences (CCS)). If Γ ⊢ e1 ▷∗ e2, then

[[Γ]]d ∪ [[e1]]d ;Γ ⊢ e1 ▷∗ e2.

The transformation is also coherent, i.e. it preserves the equivalence relation in CCS.

Lemma 5.1.5 (Coherence (CCS)). If Γ ⊢ e1 ≡ e2, then D ;Γ ⊢ e1 ≡ e2, where D =

[[Γ]]d ∪ [[e1]]d ∪ [[e2]]d.

Proof. By induction on the equivalence rules of CCS. Only the proof steps for the case

(Eq-Eta1) are shown. Case (Eq-SubEta1) follows from similar (and more tedious) proof

steps as case (Eq-Eta1), and cases (Eq-Eta2) and (Eq-SubEta2) are true by symmetry.

Case (Eq-reduce) follows directly from the preservation of reduction sequences.

If Γ ⊢ e1 ≡ e2 by (Eq-Eta1) in CCS, then e1▷
∗(λix :A.e), e2▷

∗e′2, and Γ, x :A ⊢ e ≡ e′2 x. By

Lemma 5.1.4, we have D1 ;Γ ⊢ e1 ▷∗ Li{x̄} and D2 ;Γ ⊢ e2 ▷∗ e′2, where D1 = [[Γ]]d ∪ [[e1]]d,

Li 7→ ({x̄ : }, , e) ∈ D1 (ignoring type information), and D2 = [[Γ]]d ∪ [[e2]]d. By the

induction hypothesis, D3 ;Γ, x :A ⊢ e ≡ Apply e′2 x, where D3 = [[Γ, x :A]]d ∪ [[e]]d ∪ [[e′2]]d.

The goal in this case is to show D ;Γ ⊢ e1 ≡ e2 by using DCC’s (Eq-Eta1) rule (shown

below).

D ;Γ ⊢ e1 ▷
∗ L{ē} D ;Γ ⊢ e2 ▷

∗ e′2
L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈ D

D ;Γ, x :A[ē/x̄] ⊢ e[ē/x̄] ≡ Apply e′2 x

D ;Γ ⊢ e1 ≡ e2

We already have all the premises like e1 ▷∗ Li{x̄}, etc., but they are not judged in the

desired label context D = [[Γ]]d ∪ [[e1]]d ∪ [[e2]]d. We only need to show that D1, D2, and D3

are subsets of D and to apply the weakening theorem. D1 and D2 are clearly subsets of

31

D, and D3 = [[Γ]]d ∪ [[A]]d ∪ [[e]]d ∪ [[e′2]]d since [[−]]d acts pointwise on contexts. Also,

[[A]]d ∪ [[e]]d ⊆ [[(λix :A.e)]]d by def.

⊆ [[Γ]]d ∪ [[e1]]d by (5.2),

and [[e′2]]d ⊆ [[Γ]]d ∪ [[e2]]d by (5.2). Therefore, D3 is also a subset of D.

I use σ to denote the trivial transformation from CC to CCS. This trivial transformation

commutes with the two term transformations by definition.

[[σ(e)]] = [[e]] (5.4)

In addition, function definitions in [[σ(e)]]d is a subset of the definitions in [[e]]d, because

new function definitions appear in CC’s type derivation trees as results of substitutions,

but this does not happen in CCS.

[[σ(e)]]d ⊆ [[e]]d (5.5)

I show that σ also preserves sequences of reductions. As a convention, I write e for σ(e)

when there is no ambiguity.

Lemma 5.1.6 (Preservation of reduction sequences (σ)). If Γ ⊢ e1 ▷∗ e2, then Γ ⊢
e1 ▷∗ e where Γ ⊢ e ≡ e2.

Proof. Firstly, if Γ, x :A ⊢ e1 :B and Γ ⊢ e2 :A, then Γ ⊢ σ(e1[e2/x]) ≡ e1{x 7→ e2}. This
can be proved by induction on the type derivations of e1, and all cases are trivial.

Therefore, we have (λx :A.e1) e2 ▷ e1{x 7→ e2} ≡ σ(e1[e2/x]), so σ preserves small step

reductions. Again, the preservation of reduction sequences follows immediately from

this.

I can finally prove the preservation of reduction sequences for dependently typed defunc-

tionalization (from CC to DCC) using the lemmas above.

Lemma 5.1.7 (Preservation of reduction sequences). For all e1 and e2, Γ ⊢ e1 ▷∗ e2

implies that

(DΓ ∪De1 ∪De2) ;Γ ⊢ e1 ▷
∗ e, (5.6)

(DΓ ∪De1 ∪De2) ;Γ ⊢ e ≡ e2 (5.7)

for some e where (DΓ,De1 ,De2) = ([[Γ]]d, [[e1]]d, [[e2]]d) and (Γ, e1, e2) = ([[Γ]], [[e1]], [[e2]]) .

32

Proof. Suppose that Γ ⊢ e1 ▷∗ e2. Then, we have Γ ⊢ e1 ▷∗ e and Γ ⊢ e ≡ e2 for some e,

since σ preserves reduction sequences. By Lemma 5.1.4 and Lemma 5.1.5,

([[Γ]]d ∪ [[e1]]d) ;Γ ⊢ e1 ▷
∗ e

([[Γ]]d ∪ [[e1]]d ∪ [[e2]]d) ;Γ ⊢ e ≡ e2.

Finally, since ([[Γ]]d ∪ [[e1]]d) and ([[Γ]]d ∪ [[e1]]d ∪ [[e2]]d) are both subsets of (DΓ ∪De1 ∪De2),

we have (DΓ ∪De1 ∪De2) ;Γ ⊢ e1 ▷
∗ e and (DΓ ∪De1 ∪De2) ;Γ ⊢ e ≡ e2 by weakening.

Since ground types and values do not contain functions, [[v]]d = ·, and the correctness of

the transformation is just a special case of Lemma 5.1.7.

Corollary 5.1.8. (Correctness) For all ground types A and values v of type A,

· ⊢ e :A ∧ · ⊢ e ▷∗ v =⇒ (DΓ ∪De) ; · ⊢ e ▷∗ v′ where v′ ≡ v.

I now present the proof of type-preservation, which requires three lemmas: substitution,

preservation of reduction sequences, and coherence. I proved that dependently-typed

defunctionalization preserves reduction sequences in Lemma 5.1.7 with the help of CCS,

and now I prove the remaining two lemmas in a similar way. The substitution lemma

states that defunctionalization is compatible with substitutions.

Lemma 5.1.9 (Substitution). If Γ, x :A ⊢ e1 :B and Γ ⊢ e2 :A, then D ;Γ ⊢ [[e1[e2/x]]] ≡
e1[e2/x], where D = DΓ ∪De1 ∪De2 ∪De1[e2/x].

Proof. From the proof of Lemma 5.1.6, we know that Γ, x :A ⊢ e1 :B and Γ ⊢ e2 :A implies

that Γ ⊢ σ(e1[e2/x]) ≡ e1{x 7→ e2}. This further implies that D′ ; [[Γ]] ⊢ [[σ(e1[e2/x])]] ≡
[[e1{x 7→ e2}]], where D′ = [[Γ]]d ∪ [[e1]]d ∪ [[e2]]d ∪ [[σ(e1[e2/x])]]d.

By (5.5), D′ ⊆ D. Also, [[σ(e1[e2/x])]] = [[e1[e2/x]]], [[Γ]] = Γ, and [[e1]][[[e2]]/x] = e1[e2/x] by

(5.3) and (5.4). Therefore, we have D ;Γ ⊢ [[e1[e2/x]]] ≡ e1[e2/x] by weakening.

The coherence lemma states that defunctionalization is compatible with CC’s coherence

judgements.

Lemma 5.1.10 (Coherence). If Γ ⊢ e1 ≡ e2, then D ;Γ ⊢ e1 ≡ e2, where D = DΓ ∪De1 ∪
De2 .

Proof. If Γ ⊢ e1 ≡ e2, then we have Γ ⊢ e1 ≡ e2 by definition, since the source language

never contain explicit substitutions. By Lemma 5.1.5, we have D′ ;Γ ⊢ e1 ≡ e2, where

D′ = [[Γ]]d ∪ [[e1]]d ∪ [[e2]]d. Since D′ ⊆ D, we have D ;Γ ⊢ e1 ≡ e2 by weakening.

Finally, I show type preservation with an induction on CC’s type derivation rules.

33

Theorem 5.1.11 (Type preservation). For all well-typed programs Γ ⊢ e :A,

Γ ⊢ e :A =⇒ (DΓ ∪De) ;Γ ⊢ e :A,

where (DΓ,De) = ([[Γ]]d, [[e]]d) and (Γ, e,A) = ([[Γ]], [[e]], [[A]]).

Proof. By proving the following two statements together with a simulteneous induction

on mutually-defined judgements ⊢ Γ and Γ ⊢ e :A.

1. ⊢ Γ =⇒ ⊢ DΓ ;Γ.

2. Γ ⊢ e :A =⇒ (DΓ ∪De) ;Γ ⊢ e :A.

Statement 1 follows trivially from the inductive hypothesis. For statement 2, cases (Var),

(Universe), and (Pi) are trivial by induction, and (Equiv) follows directly from the coherence

lemma. Cases (Apply) and (Lambda) require some efforts to prove.

Case (Apply). Suppose Γ ⊢ e1 e2 :B[e2/x]. The goal in this case is to show D ;Γ ⊢
Apply e1 e2 : [[B[e2/x]]], where D = (DΓ ∪ [[e1 e2]]d). We have (DΓ ∪ De1) ⊢ e1 :Pi(x,A,B)

and (DΓ ∪De2) ⊢ e2 :B by the induction hypothesis. By (Apply) and weakening, D ;Γ ⊢
Apply e1 e2 :B[e2/x]. By the substitution lemma, D′ ;Γ ⊢ B[e2/x] ≡ [[B[e2/x]]], where

D′ = (DΓ ∪De2 ∪DB ∪DB[e2/x]). We have the goal if D′ ⊆ D. Indeed,

1. DΓ ⊆ D by def.

2. De2 ⊆ D since De2 ⊆ [[e1 e2]]d by def.

3. DB[e2/x] ⊆ D since DB[e2/x] ⊆ [[e1 e2]]d by def.

4. DB ⊆ D, because DB ⊆ [[Πx :A. B]] by def., [[Πx :A. B]] ⊆ De1 by Γ ⊢ e1 :Πx :A. B

and Lemma 4.3.5, and De1 ⊆ D by def.

Case (Lambda). Suppose Γ ⊢ λix :A. e :Πx :A. B. The goal here is to show that

D ;Γ ⊢ Li{x̄} :Pi(x,A,B), where D = (DΓ ∪ De), Li 7→ ({x̄ : Ā}, Pi(x,A,B), e). We have

Γ ⊢ x̄ : Ā since x̄ are well-typed free variables, therefore, we have D ;Γ ⊢ x̄ : Ā by the

inductive hypothesis and weakening. We also have Li in D by definition. If ⊢ D ;Γ is true,

the goal can be shown with DCC’s type rule (Label). ⊢ (DΓ ∪ De) ;Γ can be obtained

from the induction hypothesis and Γ, x :A ⊢ e :B. Letting Γfv = ·, x̄ : Ā, if the following

statements are true, then we have ⊢ D ;Γ by (WFL-Label) and weakening.

(a) (DΓ ∪De) ;Γfv ⊢ Pi(x,A,B) :U.

(b) (DΓ ∪De) ;Γfv, x :A ⊢ e :B.

By Lemma 4.3.2, FV(λix :A. e) ⊢ (λix :A. e) :Πx :A. B, so FV(λix :A. e) ⊢ Πx :A. B :U

and FV(λix :A. e), x :A ⊢ e :B. Therefore, conditions (a) and (b) are true by the induction

hypothesis and weakening.

34

D ;Γ ⊢ x :A ;b x
(B-Var)

D ;Γ ⊢ Ui :Ui+1 ;b Ui

(B-Universe)

D ;Γ ⊢ A :Ui ;b A D ;Γ, x :A ⊢ B :Uj ; B

D ;Γ ⊢ Pi(x,A,B) : Umax(i,j) ;b Πx :A. B
(B-Pi)

D ;Γ ⊢ e1 :Pi(x,A,B) ;b e1 Γ ⊢ e2 :A ;b e2
D ;Γ ⊢ Apply e1 e2 : : B[e2/x] ;b e1 e2

(B-Apply)

L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈ D D ;Γ ⊢ ē : Ā ;b ē
D ;Γ ⊢ A :U ;b A D ;Γ, x :A ⊢ e :B ;b e

D ;Γ ⊢ L{ē} : Pi(x,A[ē/x̄],B[ē/x̄]) ;b (λx :A[ē/x̄]. e[ē/x̄])
(B-Lambda)

D ;Γ ⊢ e :A ;b e

D ;Γ ⊢ e :B ;b e
(B-Equiv)

Figure 5.2: Backward transformation

5.2 Type safety and consisntency

As a dependent type theory, DCC should be type-safe when it acts as a programming

language and consistent when interpreted as a logic system. I prove these properties in

this section by defining a backward transformation from DCC to CC. If the backward

transformation preserves reduction sequences, then reducing a term in DCC is equivalent

to reducing a term in CC. If the transformation is type-preserving and it turns the logical

interpretation of false in DCC into that of CC, then valid proofs (well-typed programs)

in DCC correspond to valid proofs in CC. This reduces the problem of proving the type

safety and consistency of DCC to proving that of CC, which is a standard result. In other

words, I show that DCC can be modelled by CC in a consistent and meaning-preserving

way. This is a standard technique in the literature [28, 11]. Type preservation for the

backward transformation also requires the substitution, preservation of reduction sequences,

and coherence lemmas, similar to the proof of Theorem 5.1.11. There is no particular

difficulty in proving lemmas in this section.

I define the backward transformation [[−]] with a new judgement (Figure 5.2) of the

form D ;Γ ⊢ e :A ;b e and [[e]] ≜ e. It transcribes variables, universes, Π-types, and

applications back to their corresponding forms in CC. For a label term L{x̄} where

L 7→ ({x̄ : Ā}, Pi(x,A,B), e), the transformation turns it into (λx :A[ē/x̄]. e[ē/x̄]) – a

function with all of its free-variable values substituted in, where A, e, and ē stand for [[A]],

[[e]], and [[ē]] respectively (B-Label). Intuitively, [[−]] decompiles a label back to the function

it represents. The backward transformation also acts pointwise on DCC’s type context.

35

In CC, the interpretation of the logical false is ΠA :U0. A. There is no closed expression

with the false type. In DCC, the interpretation of false is Pi(A,U0,A), so the backward

transformation preserves falseness by definition.

Next, I show that the backward transformation is compatible with subsitutions. As a

convention in this chapter, I use e to stand for [[e]] when there is no ambiguity.

Lemma 5.2.1. If D ;Γ, x :A ⊢ e1 :B and D ;Γ ⊢ e2 :A, then [[e1[e2/x]]] = e1[e2/x].

Proof. By induction on the type derivation of e1. The only non-trivial case is (Label), all

other cases follow directly from the induction hypothesis.

In case (Label), the assumptions areD ;Γ, y :C ⊢ L{ē}:Pi(x,A,B), L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈
D, and D ;Γ ⊢ e2 :C. The goal is showing that [[(L{ē})[e2/y]]] = (λx :A[ē/x̄]. e[ē/x̄])[e2/y].

Indeed, we have

[[(L{ē})[e2/y]]] = [[L{ē[e2/y]}]] = λx :A[(ē[e2/y])/x̄]. e[(ē[e2/y])/x̄]

by the induction hypothesis, and

(λx :A[ē/x̄]. e[ē/x̄])[e2/y] = λx : ((A[ē/x̄])[e2/y]). ((e[ē/x̄])[e2/y])

= λx :A[(ē[e2/y])/x̄]. e[(ē[e2/y])/x̄]

since y is not free in A and e (x̄ are all the free variables in them).

Similar to proofs in Section 5.1, I show preservation of reduction sequences by showing

that the transformation preserves small-step reductions.

Lemma 5.2.2. If D ;Γ ⊢ e1 ▷
∗ e2, then Γ ⊢ e1 ▷

∗ e2.

Proof. Firstly, the backward transformation preservs small-step reductions. There is only

one reduction rule (Beta) in DCC. Assume that D ;Γ ⊢ Apply L{ē} e2 ▷ e1[ē/x̄, e2/x] and

L 7→ ({x̄ : Ā}, Pi(x,A,B), e1) ∈ D. We have [[Apply L{ē} e2]] = (λx :A[ē/x̄]. e1[ē/x̄]), and

Γ ⊢ (λx :A[ē/x̄]. e1[ē/x̄]) e2 ▷ (e1[ē/x̄])[e2/x]

= e1[ē/x̄, e2/x] since x is not free in ē

= [[e1[ē/x̄, e2/x]]] by substitution.

Therefore, the backward transformation preserves reduction sequences by a trivial induction

on the number of small steps in the sequence.

I also need to show coherence for the backward transformation.

36

Lemma 5.2.3. If D ;Γ ⊢ e1 ≡ e2, then Γ ⊢ e1 ≡ e2.

Proof. By induction on DCC’s equivalence rules. Only proof steps for case (Eq-Eta1) are

shown. Case (Eq-Eta2) is symmetric to (Eq-Eta1), and (Eq-reduce) follows directly by

preservation of reduction sequences.

In case (Eq-Eta1), the assumption is

D ;Γ ⊢ e1 ▷
∗ L{ē} D ;Γ ⊢ e2 ▷

∗ e′2
L 7→ ({x̄ : Ā}, Pi(x,A,B), e) ∈ D

D ;Γ, x :A[ē/x̄] ⊢ e[ē/x̄] ≡ Apply e′2 x

D ;Γ ⊢ e1 ≡ e2

and the goal is Γ ⊢ e1 ≡ e2. By Lemma 5.2.2, Γ ⊢ e1 ▷∗ (λx :A[ē/x̄]. e[ē/x̄]) and Γ ⊢ e2 ▷∗e′2.

By the induction hypothesis and the substitution lemma,

Γ, x :A ⊢ e[ē/x] ≡ e′2 x. Therefore, Γ ⊢ e1 ≡ e2 by CC’s equivalence rule (Eq-Eta1).

The final lemma I need is type preservation.

Lemma 5.2.4. If D ;Γ ⊢ e :A, then Γ ⊢ e :A.

Proof. By proving the following two statements together with a simulteneous induction

on mutually-defined judgements ⊢ D ;Γ and D ;Γ ⊢ e :A.

1. ⊢ D ;Γ =⇒ ⊢ Γ.

2. D ;Γ ⊢ e :A =⇒ Γ ⊢ e :A.

Statement 1 follows trivially from the inductive hypothesis. For statement 2, cases (Var),

(Universe), and (Pi) are trivial by induction. (Equiv) follows directly from the coherence

lemma, and cases (Apply) and (Label) are proved easily with the substitution lemma.

As a corollary of the lemmas shown in this section, DCC is type-safe and consistent since

CC is.

37

Chapter 6

Conclusion and future work

This dissertation studied type-preserving defunctionalization for a variant of the Calculus

of Constructions. I illustrated that Pottier and Gauthier’s type-preserving polymorphic

defunctionalization does not extend to dependently-typed languages. Then, I presented

abstract defunctionalization as an alternative method. Abstract defunctionalization

consists of a target language (the Defunctionalized Calculus of Constructions) and a

transformation from the source language to the target language. The target language has a

primitive notion of function labels that fits the abstract description of defunctionalization.

I proved the transformation type-preserving and correct, and I showed that the target

language is type-safe as a programming language and consistent as a logic.

In this chapter, I first cover serval topics and issues in implementing the target language,

then I end with a discussion on future work.

6.1 Implementation of abstract defunctionalization

This section briefly introduces my implementation of the Defunctionalized Calculus of

Constructions (DCC) and the transformation from CC to DCC in OCaml. The implemen-

tation allowed me to check mechanically for complicated and counter-intuitive examples of

dependently-typed defunctionalization, which are difficult and tedious to check by hand.

Syntax The code structure is based on Bauer’s tutorial of implementing dependent type

theory in OCaml [29]. The abstract syntax of DCC is defined with the following inductive

type expr.

type expr =

| Var of variable | Universe of int

| Label of label * expr list

| Apply of expr * expr

38

| Pi of variable * expr * expr

| Unit | UnitType

type context = {

def : (label * defItem) list; (* The label context *)

con : (variable * expr) list; (* The type context *)

}

The data types above are the exact resemblance to DCC’s syntax in Figure 4.1, and it

includes the unit type as a base type. Types variable and label are string-integer pairs

– the string is the name of the variable or label, and the integer is used for distinguishing

variables or labels named after the same string. Data type defItem is a record for keeping

the data associated with a label – the list of free variables, etc. (definition omitted for

simplicity). I implemented utility functions subst, normalize, and equal to perform

substitutions, normalize terms, and determine whether two terms are equivalent.

subst : (variable * expr) list -> expr -> expr

normalize : context -> expr -> expr

equal : context -> expr -> expr -> bool

Type-checking and transformation In DCC, an expression has at most one type (up

to equivalence), meaning that given a context and a well-typed expression, the type of the

expression can be worked out algorithmically according to the type rules. I implemented

function infer type for inferring the type of a well-typed term and function type check

for checking whether a given type judgement is derivable.

infer_type : context -> expr -> expr

type_check : context -> expr -> expr -> bool

Given inputs (con, e, t), type check firstly checks if the context con is well-formed.

Then, it computes t’ = (infer type con e) and checks if t’ is equivalent to t.

The defunctionalization transformation is implemented with function transform full.

Given a type judgement (con, e, t) in CC (it corresponds to Γ ⊢ e :A), transform full

firstly assigns a unique integer-valued tag to each lambda abstraction in (con, e, t).

Then, it computes the term transformation and extracts function definitions for the labelled

CC judgement according to the rules defined in Figure 4.5 and Figure 4.6. It returns a

triple (con’, e’, t’), which are the transformed context, term, and type. I can use

(type check con’ e’ t’) to see if the transformation preserves types for a particular

input.

Checking well-formedness DCC’s type rules presented in Figure 4.2 are not suitable

for practical implementation, since it checks the well-formedness of the context in every

sub-derivation tree of variables, universes, and labels. This is very inefficient. Since there

39

is no way to extend the label context in a DCC program, type check only needs to check

its well-formedness once at the beginning of the type-checking process. Similarly, it only

checks the well-formedness of the type context once, and makes sure that whenever it

extends the type context with a variable-expression pair, that expression is a valid type in

the old context.

6.2 Future work

Recursive functions I plan to adapt abstract defunctionalization to the Calculus of

Inductive Constructions (CIC), the extension of CC with inductive families and recursive

functions. This involves defining a syntax for inductive families, pattern matching, and

recursions in the target language DCC. While recursive functions do not add extra difficulty

to the defunctionalization transformation [3], adding recursions to DCC is a challenge.

Dependently-typed languages only accept terminating functions, since non-terminating

functions make the type system inconsistent. Languages like Agda and Coq have syntactic

conditions to guarantee termination of recursive functions. DCC should be extended with

syntactic termination conditions for recursive functions, and defunctionalization should

transform the termination conditions from the source language to those in the target

language.

Embedding DCC into Agda It is possible to formalize DCC as an embedding in a

proof assistant like Agda. The benefit of doing so is having an intrinsic abstract syntax

that only contains well-typed terms, and the meta-theoretic properties of DCC can be

formally studied in a machine-checked setting. However, dealing with variable binding and

substitutions in the meta-theory is challenging. A promising tool for formalizing variable

binding is the second-order abstract syntax [30], but it only applies to simply-typed

systems at the moment. Other examples of embedding a dependent theory into another

used quotient-inductive types [31] or shallow embeddings [32], but it is not clear how to

adapt these methods to model DCC’s label context.

Type-preserving compilers for dependent types Ager et al. showed that closure

conversion, continuation-passing style transformation (CPS), and defunctionalization could

be combined to derive compilers and virtual machines of the untyped lambda calculus [33].

Dependently-typed closure conversion and the CPS transformation are available in the

literature [10, 11]. With abstract defunctionalization, the next step is to investigate

whether the derivation method by Ager et al. leads to a type-preserving compiler for

dependently-typed languages, which makes checking the correctness of separately-compiled

and linked programs possible.

40

Bibliography

[1] William J Bowman. Compiling with Dependent Types. PhD thesis, Northeastern
University, 2019.

[2] Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunctional-
ization. In Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman, editors,
Proceedings of the 1997 ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), Amsterdam, The Netherlands, June 9-11, 1997, pages
25–37. ACM, 1997.

[3] François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization. In
Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004, pages 89–98. ACM, 2004.

[4] Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In J. Gregory Morrisett and Simon L. Peyton Jones,
editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11-13, 2006, pages 42–54. ACM, 2006.

[5] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (New-
man) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications
and certified abstraction layers. In Sriram K. Rajamani and David Walker, editors,
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
595–608. ACM, 2015.

[6] David Tarditi, J. Gregory Morrisett, Perry Cheng, Christopher A. Stone, Robert
Harper, and Peter Lee. TIL: A type-directed optimizing compiler for ML. In Charles N.
Fischer, editor, Proceedings of the ACM SIGPLAN’96 Conference on Programming
Language Design and Implementation (PLDI), Philadephia, Pennsylvania, USA, May
21-24, 1996, pages 181–192. ACM, 1996.

[7] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.

[8] Hongwei Xi and Robert Harper. A dependently typed assembly language. In Ben-
jamin C. Pierce, editor, Proceedings of the Sixth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’01), Firenze (Florence), Italy, September
3-5, 2001, pages 169–180. ACM, 2001.

41

[9] George C. Necula. Proof-carrying code. In Peter Lee, Fritz Henglein, and Neil D. Jones,
editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Papers Presented at the Symposium,
Paris, France, 15-17 January 1997, pages 106–119. ACM Press, 1997.

[10] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. Type-preserving
CPS translation of Σ and Π types is not not possible. Proc. ACM Program. Lang.,
2(POPL):22:1–22:33, 2018.

[11] William J. Bowman and Amal Ahmed. Typed closure conversion for the calculus of
constructions. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 797–811. ACM, 2018.

[12] John C. Reynolds. Definitional interpreters for higher-order programming languages.
In John J. Donovan and Rosemary Shields, editors, Proceedings of the ACM annual
conference, ACM 1972, 1972, Volume 2, pages 717–740. ACM, 1972.

[13] Wei-Ngan Chin and John Darlington. A higher-order removal method. LISP Symb.
Comput., 9(4):287–322, 1996.

[14] Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure
conversion for typed languages. In Gert Smolka, editor, Programming Languages and
Systems, 9th European Symposium on Programming, ESOP 2000, Held as Part of the
European Joint Conferences on the Theory and Practice of Software, ETAPS 2000,
Berlin, Germany, March 25 - April 2, 2000, Proceedings, volume 1782 of Lecture
Notes in Computer Science, pages 56–71. Springer, 2000.

[15] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors. In Chris
Hankin and Dave Schmidt, editors, Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London,
UK, January 17-19, 2001, pages 166–178. ACM, 2001.

[16] Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In Michael
Codish and Eijiro Sumii, editors, Functional and Logic Programming - 12th Inter-
national Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings,
volume 8475 of Lecture Notes in Computer Science, pages 119–135. Springer, 2014.

[17] Andrew P. Tolmach and Dino Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. J. Funct. Program., 8(4):367–412, 1998.

[18] Lasse R Nielsen. A denotational investigation of defunctionalization. BRICS Report
Series, 7(47), 2000.

[19] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings
of the 3rd international ACM SIGPLAN conference on Principles and practice of
declarative programming, September 5-7, 2001, Florence, Italy, pages 162–174. ACM,
2001.

[20] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and correctness of
program transformations based on control-flow analysis. In Naoki Kobayashi and
Benjamin C. Pierce, editors, Theoretical Aspects of Computer Software, 4th Inter-
national Symposium, TACS 2001, Sendai, Japan, October 29-31, 2001, Proceedings,
volume 2215 of Lecture Notes in Computer Science, pages 420–447. Springer, 2001.

42

[21] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

[22] Zhaohui Luo. An extended calculus of constructions. PhD thesis, University of
Edinburgh, UK, 1990.

[23] The Agda team. The Agda user manual. https://agda.readthedocs.io/en/v2.6.
2.1/index.html, 2021.

[24] The Coq development team. The Coq reference manual. https://coq.inria.fr/
distrib/current/refman/, 2021.

[25] Amin Timany and Matthieu Sozeau. Consistency of the predicative calculus of
cumulative inductive constructions (pCuIC). CoRR, abs/1710.03912, 2017.

[26] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure
conversion. In Hans-Juergen Boehm and Guy L. Steele Jr., editors, Conference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996, pages 271–283. ACM Press, 1996.

[27] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. J. Funct. Program., 1(4):375–416, 1991.

[28] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical
models of type theory. In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of
the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017,
Paris, France, January 16-17, 2017, pages 182–194. ACM, 2017.

[29] Andrej Bauer. How to implement dependent type theory. http://math.andrej.com/
2012/11/08/how-to-implement-dependent-type-theory-i/, 2012.

[30] Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract
syntax. Proc. ACM Program. Lang., 6(POPL):1–29, 2022.

[31] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient
inductive types. In Rastislav Bod́ık and Rupak Majumdar, editors, Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
18–29. ACM, 2016.

[32] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embedding of type
theory is morally correct. CoRR, abs/1907.07562, 2019.

[33] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From interpreter
to compiler and virtual machine: a functional derivation. BRICS Report Series, 10(14),
2003.

43

https://agda.readthedocs.io/en/v2.6.2.1/index.html
https://agda.readthedocs.io/en/v2.6.2.1/index.html
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
http://math.andrej.com/2012/11/08/how-to-implement-dependent-type-theory-i/
http://math.andrej.com/2012/11/08/how-to-implement-dependent-type-theory-i/

	Introduction
	Motivation and contributions
	Related work in type-preserving compilation

	Background
	Defunctionalization
	Simply-typed programs
	Polymorphic programs
	Related work in defunctionalization

	The source language (CC)

	A failing attempt
	Inductive families
	Failure to defunctionalize

	Abstract defunctionalization
	Main ideas
	Defunctionalized Calculus of Constructions (DCC)
	Syntax
	Type judgements

	Transformation
	Term transformation
	Extracting function definitions

	Type preservation, correctness, and consistency
	Correctness and type preservation
	Type safety and consisntency

	Conclusion and future work
	Implementation of abstract defunctionalization
	Future work

