
Towards Quantitative Inductive Families

Yulong Huang and Jeremy Yallop

University of Cambridge, UK

We present the on-going work to extend Quantitative Type Theory (QTT) [2] with inductive
families [6] whose constructors are user-annotated. We give the general scheme for defining lists
with quantities, which we believe can be extended to arbitrary inductive families, subsuming
instances of datatypes like dependent pairs [1, 2, 4], unit [2, 4], Boolean [2], natural numbers [1],
and lists [3] scattered in recent work.

Quantitative Type Theory. Quantitative type theory extends MLTT with runtime usage
annotations on variables, ranging from 0 (unused), and 1 (used linearly), to ω (used unlimitedly).

Our judgements are in the form of Γ ⊢ M
σ
: A ; m (inspired by [1]), which says that M is well-

typed in Γ and m = q1, · · · , qn is a quantity assignment to variables in the context.
ty-Pi

Γ ⊢ A
0
: Type ; 0 Γ, x :A ⊢ B

0
: Type ; 0

Γ ⊢ Πx
q
:A.B

0
: Type ; 0

ty-Var
x : A ∈ Γ

Γ ⊢ x
σ
: A ; σx

The typing rules are standard except for quantity information. The parameter σ in the
judgement (above the colon) indicates the mode of type checking, either 0 (where variable
usage is ignored) or 1 (where variable usage is counted). Terms checked in mode 0 are runtime-
irrelevant and require no resource, and the rules ensure that they will not appear at runtime.
Types are runtime irrelevant, so Π is judged with σ = 0, takes erased arguments, and is assigned
a vector of zero quantities. Variables are assigned σx, denoting σ for x and 0 for other variables
(note the notation abuse here to implicitly coerce modes to quantities).

ty-Lam

Γ, x :A ⊢ M
σ
: B ; m, q

Γ ⊢ λx
q
:A.M

σ
: Πx

q
:A.B ; m

ty-App
σ′ = 0 ⇔ (σ = 0 ∨ q = 0)

Γ ⊢ M
σ
: Πx

q
:A.B ; m Γ ⊢ N

σ′

: A ; n

Γ ⊢ M N
σ
: B [M /x] ; m + qn

The lambda case is straightforward. For an application M N , M uses resources m and uses
its argument q times, while N uses resources n, so the total resource of the application is m+qn
(operations on quantities, like addition and multiplication, extend pointwise to assignments).
The side condition ensures that erased terms cannot appear at runtime: a function accepts an
erased argument (σ′ = 0) only if the entire application is runtime irrelevant (σ = 0), or if the
function does not use its argument at all (q = 0).

QTT terms are subject to the usual βη-equality and conversion. The quantities have a
partial order of 0 ≤ ω ≥ 1. QTT supports a sub-usaging rule for over-approximating the

resource usage: if Γ ⊢ M
σ
: A ; m and m ≤ m ′ then we can also assign m ′ to M .

QTT with linear lists. We extend QTT with linear lists, an instance of the general scheme
for lists. Here is the inductive family signature with each constructor argument marked with a
quantity (both 1 here), specifying its runtime usage:

data List11 (A:Type) : Type where [] : List11A | :: : Πx
1
:A.Πxs

1
:List11A.List11A

This extends our type theory with a type formation rule and one introduction rule for each
constructor. Type former List11 is judged with σ = 0, since “types need nothing”. The
introduction rules are similar to rule ty-App, where we sum the usage of all the arguments.

Towards Quantitative Inductive Families Huang, Yallop

ty-List

Γ ⊢ A
0
: Type ; 0

Γ ⊢ List11A
0
: Type ; 0

ty-Nil

Γ ⊢ A
0
: Type ; 0

Γ ⊢ []
σ
: List11A ; 0

ty-Cons

Γ ⊢ M
σ
: A ; m

Γ ⊢ N
σ
: List11A ; n

Γ ⊢ M :: N
σ
: List11A ; m + n

Given a predicate P , list L, and branches M and N for the empty and non-empty cases, we
get a term of type P [L/ls] from the eliminator. The typing and β-reduction (omitted here) are
conventional. The two branches M and N use resources m and n respectively. The last premise
says that N must use the head argument x and the inductive hypothesis r exactly once, while
the tail argument xs is for typing only (hence unused).

ty-ElimList

Γ, ls :List11A ⊢ P
0
: Type ; 0 Γ ⊢ L

σ
: List11A ; l Γ ⊢ M

σ
: P [[]/ls] ; m

Γ, x :A, xs :List11A, r :P [xs/ls] ⊢ N
σ
: P [x :: xs/ls] ; n, 1, 0, 1

Γ ⊢ Elimlist(P ,L,M , (x , xs, r).N)
σ
: P [L/ls] ; l +m + ωn

The eliminator reduces to M if L is empty, using resources m. Otherwise, it evaluates N
many times until it hits the base case M , using resources m + ωn (we do not know the exact
number of recursions). We take the join of the quantities in these two cases (since we do not
know which branch the eliminater reduces to) and add the resource used by L to obtain the
quantity assignment for the eliminator, l + (m ⊔ (m + ωn)), which simplifies to l +m + ωn.

Lists with quantities. For any two fixed quantities p and q, we can give a inductive family
signature similar to that of List11, except the constructor arguments are marked with p and q
instead of 1. Again, our type theory is extended with type formation and introduction rules.
The type former for Listpq is judged with σ = 0 as before. Constructor applications are treated
like function applications – we sum the resource assigned to each argument multiplied by its
designated usage. As in ty-App, the side conditions say that an argument is erased only if the
entire expression is runtime irrelevant or it is never used.

ty-List-pq

Γ ⊢ A
0
: Type ; 0

Γ ⊢ ListpqA
0
: Type ; 0

ty-Cons-pq

σ1 = 0 ⇔ (σ = 0 ∨ p = 0) σ2 = 0 ⇔ (σ = 0 ∨ q = 0)

Γ ⊢ M
σ1
: A ; m Γ ⊢ N

σ2
: ListpqA ; n

Γ ⊢ M :: N
σ
: ListpqA ; pm + qn

The eliminator for Listpq has the same structure and typing rules as in rule ty-ElimList
with a more general premiss for N . The list’s head should be used p times in N . The tail is
used q1 times directly and q2 times in the recursion in N , so the combined usage q1 + q2 should
be no more than q, the specified usage of the tail. For example, if p = q = 1, we have a more
general eliminator of List11 that can only use either xs or r once.

ty-ElimList-pq

Γ, ls :ListpqA ⊢ P
0
: Type ; 0 Γ ⊢ L

σ
: ListpqA ; l Γ ⊢ M

σ
: P [[]/ls] ; m

q1 + q2 ≤ q Γ, x :A, xs :ListpqA, r :P [xs/ls] ⊢ N
σ
: P [x :: xs/ls] ; n, p, q1, q2

Γ ⊢ Elimlist(P ,L,M , (x , xs, r).N)
σ
: P [L/ls] ; l + (m ⊔ (q2m + (q2 + 1)n))

Calculation of the quantity assignment is also similar to rule ty-ElimList. We join the
usage of the eliminator’s two cases and add the resource for creating the list. The base case M
has usage m. The usage of N depends on the number of times it uses the induction hypothesis
r, i.e. the value of q2: the base case is evaluated q2 times and the inductive case q2 + 1 times,
so quantity assignment for rule ElimList-pq is l + (m ⊔ (q2m + (q2 + 1)n)).

Our extension is sound because erasing quantity-related information gives the usual induc-
tive families [6], whose soundness is well known [5]. We have shown that the extension respects
QTT’s syntactic properties, e.g. substitution and subject reduction.

2

Towards Quantitative Inductive Families Huang, Yallop

Lemma 1.1 (Substitution). The following rule for substitution is admissible:
ty-Subst

Γ, x :A ⊢ M
σ
: B ; m, q Γ ⊢ N

σ′

: A ; n
σ′ = 0 ⇔ q = 0

Γ ⊢ M [N /x]
σ
: B [N /x] ; m + qn

Lemma 1.2 (Reduction). If Γ ⊢ M
σ
: A ; m and M reduces to M ′, then Γ ⊢ M ′ σ

: A ; m is
derivable.

References

[1] Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. A graded modal dependent type theory
with a universe and erasure, formalized. Proc. ACM Program. Lang., 7(ICFP):920–954, 2023.

[2] Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and Erich Grädel,
editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.

[3] Robert Atkey. Polynomial time and dependent types. Proc. ACM Program. Lang., 8(POPL):2288–
2317, 2024.

[4] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A graded
dependent type system with a usage-aware semantics. Proc. ACM Program. Lang., 5(POPL):1–32,
2021.

[5] Peter Dybjer. Inductive sets and families in martin-lof’s type theory and their set-theoretic seman-
tics. In Logical frameworks, pages 280–306. 1991.

[6] Peter Dybjer. Inductive families. Formal aspects of computing, 6:440–465, 1994.

3

