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TEAL: a Total Expressive Assembly Language
A report on work in progress
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Abstract
We present the design of a typed assembly language with a

property we dub total correctness: well-typed programs are

guaranteed to return their specified values.

The design combines a high-level specification language

with a low level executable langauge of instructions and

blocks, connecting the two together in a single assembly

language by means of typing rules.

Our language is total (i.e. every program terminates), but

expressive, with support for higher-order functions and con-

trol flow that goes beyond primitive recursion.

The design is currently at an early stage, but we plan to

extend it to support more sophisticated type systems, as well

as effects and other features needed in a practical system.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Semantics; • Theory of computation
→ Type theory.

Keywords: virtual machines, low-level languages, security,

types, type systems, termination
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1 Introduction
A number of situations call for low-level languages with

strong guarantees. For example, the Linux kernel supports

extensibility by means of injection of user code written in the

eBPF bytecode language [Rice 2023]. To prevent security vio-

lations, injected bytecode is statically analysed to ensure that

it is type-safe and terminating. The static analyser checks

for the absence of back references in program structure, for

finite bounds on loops, and for various other syntactic prop-

erties that ensure termination but rather severely restrict the

expressiveness of the language.

In a quite different context, in dependently typed program-

ming languages such as Agda [Bove et al. 2009], programs

can represent proofs of logical propositions, and consistency

of the logic also requires checking that programs are type-

safe and terminating. The type systems are sophisticated,

and the languages are consequently very expressive, but

existing implementations discard types at an early stage of

2018. 2475-1421/2018/1-ART1 $15.00
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compilation, weakening the guarantees offered by compiled

code.

This article presents a preliminary design for TEAL, a

typed, stack-oriented assembly language based on the SECD

machine, which aims to avoid these shortcomings, combin-

ing type safety, expressiveness, termination guarantees, and

a property that we call total correctness. The total correctness
property involves attaching a behavioural specification to

a TEAL program, and guarantees that each program meets

its specification: that is, if the program type checks, it is

guaranteed to return the specified value.

TEAL is designed as a compilation target, not a user-facing

language. However, the guarantees it offers do not depend

on the correctness of compilation, but arise directly from the

type system that ties together specifications with instruction

sequences and blocks.

Structure of the article. The rest of this article is struc-
tured as follows:

• Section 2 introduces our design by means of an exam-

ple, Ackermann’s function. The example shows that

the language is based on Gödel’s System T, and that it

is typed and expressive, supporting higher-order com-

putation and functions that cannot be expressed with

primitive recursion, while maintaining termination

guarantees.

• Section 3 gives the syntax, configurations and reduc-

tions of the language.

• Section 4 presents the specification language that de-

scribes computational behaviour of the instructions.

• Section 5 discusses our total correctness property,

along with the more standard properties of type safety

and termination.

• Section 6 discusses related work and some future

plans.

The work we describe is not yet complete: we have a

language design, but have not yet specified a compilation

procedure or implemented the language. However, we have

developed an embedding of the language in the Agda proof

assistant that allows us to establish the guarantees of Sec-

tion 5 with a high degree of confidence.

2 An example: Ackermann’s function
The Ackermann function is a simple example of a function

that is not primitive recursive. It takes two arguments (𝑚,𝑛)
and can be defined succinctly as an iterative function over

1
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1 succ ({}, x:Nat ↦→ suc x : Nat) : . . .
2 one ({}, _:Unit ↦→ 1 : Nat) : . . .
3 apply ({f :Nat → Nat}, p:Nat ↦→ f p : Nat) : . . .
4 rep ({f :Nat → Nat}, x:Nat ↦→ _ : Nat) :
5 var x load x
6 suc increment x
7 rec one apply compute fx+1 (1)
8 ret
9 sucClo ({}, _:Unit ↦→ succ{} : Nat → Nat) :
10 clo 0 succ create closure succ{}
11 ret
12 repClo ({},A:Nat → Nat ↦→ rep{A} : Nat → Nat) :
13 var A obtain function to repeat
14 clo 1 rep create closure rep{A}
15 ret
16 acker ({}, x:Nat × Nat ↦→ _ : Nat) :
17 var x x = (m, n)
18 fst obtain m
19 rec sucClo repClo compute closure Am
20 var x
21 snd obtain n
22 app apply closure Am to n
23 ret
24 main (· ⊢ acker{} (3, 4) : Nat) :
25 clo 0 acker create closure acker{}
26 lit 3 push 3
27 lit 4 push 4
28 pair form pair (3, 4)
29 app compute acker(3, 4)
30 ret

Figure 1. Ackermann function

𝑚:

𝐴0 (𝑛) = 𝑛 + 1

𝐴𝑚+1 (𝑛) = 𝐴𝑛+1
𝑚 (1)

where 𝑓 𝑛 (𝑥) denotes the 𝑛-fold application of a function 𝑓

to an argument 𝑥 :

𝑓 0 (𝑥) = 𝑥

𝑓 𝑛+1 (𝑥) = 𝑓 (𝑓 𝑛 (𝑥))

Alternatively, these iterative functions may be equiva-

lently written using an explicit recursor, that is, a construct
Rec(𝑧, (𝑥, 𝑝).𝑠,𝑚) that interprets a natural number𝑚 using

terms 𝑧 and 𝑠 , yielding 𝑧 when𝑚 is 0 and 𝑠 when𝑚 is 1 + 𝑥 .

The sub-term (𝑥, 𝑝).𝑠 makes the variables 𝑥 and 𝑝 available

within the expression 𝑠 , binding 𝑥 to the predecessor of𝑚

and 𝑝 to the result of applying the recursor to 𝑥 . The 𝑛-fold

application is expressed as follows

𝑓 𝑛 (𝑥) ≡ Rec(𝑥, (_, 𝑝). 𝑝 𝑥, 𝑛)

and the Ackermann function is defined as follows

𝐴𝑚 ≡ Rec((𝜆𝑛.𝑛 + 1), (_, 𝐴).(𝜆𝑛. 𝐴𝑛+1 (1)),𝑚)
ack (𝑚,𝑛) ≡ 𝐴𝑚 (𝑛)

where the recursor returns a function of type Nat → Nat.
Figure 1 shows the assembly code corresponding to the

definition of ack. 1 Each label corresponds to a function or

a zero/successor case of recursor in ack, and the signature

attached to each label specifies the behaviour of the instruc-

tions that follow. For example, succ (Line 1) corresponds to
the successor function 𝜆𝑛.𝑛 + 1, rep (Line 4) corresponds to

(𝜆𝑛. 𝐴𝑛+1 (1)), and the two recursor cases in the definition

of 𝐴𝑚 are represented by sucClo and repClo, each of which

returns a function closure. The signature for acker (Line 16,
omitted in the figure) is

(Rec(suc{}, (_, 𝐴).rep{𝐴}, fst 𝑥)) (snd 𝑥)
i.e. the unfolded definition of 𝐴𝑚 (𝑛) with functions replaced

by labels and explicit projections out of the pair.

3 Assembly language and stack machine
Our assembly language TEAL is an instruction set for a SECD

virtual machine [Landin 1964], where SECD stands for four

of the machine components: stack (st), environment (env),
code (Is), and dump, which in modern terms, is a stack of

function call frames (fr).

Instructions I ::= var x | clo 𝑛 𝔏 | app
| pair | fst | snd
| lit 𝑛 | suc | rec 𝔏z 𝔏s

Sequences Is ::= ret | I; Is

Code block 𝔅 ::= · | 𝔅;𝔏({Γ}, x:A ↦→ M : B) : Is

Program 𝑃 ::= 𝔅;main(Γ ⊢ M : A) : Is

Figure 2. Syntax of TEAL

3.1 Syntax and machine configuration
The syntax of TEAL is shown in Figure 2. The instructions

can be categorized in the following way:

• Variables: var (access)

• Closures: clo (formation), app (application)
• Pairs: pair (formation), fst, snd (projections)
• Natural numbers: lit (literal constant), suc (incre-

ment), rec (bounded recursion)

Instruction var x copies the x-th element from the environ-

ment to the stack. Instruction clo 𝑛 𝔏 takes the top n items

from the stack to form a closure with code label 𝔏. The rec
instruction takes two labels for a bounded recursion on the

natural number on top of the stack, where 𝔏z is the code

1
For simplicity, the signatures do not strictly follow the typing rules.
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label for the zero case and 𝔏s is the label for the successor

case. Our framework supports other useful instructions like

swap and stack access, but we omit them here for simplicity.

The instructions can be chained into a sequence that ends

with ret (the return instruction). A code block 𝔅 is a list

of labelled instruction sequences with their specifications

(which we will cover in Section 4.1), and a program is a code

block with a main sequence.

Values v ::= n | ⟨⟩ | 𝔏{v} | ⟨v, v′⟩
Runtime environment env ::= · | env :: v
Runtime stack st ::= · | st :: v
Call frames fr ::= · | fr :: ⟨Is, env, st⟩
Machine configuration 𝐶 ::= ⟨Is, env, st, fr⟩𝔅

Figure 3. Machine configuration

Figure 3 shows the definition of the SECD abstract ma-

chine. A machine configuration ⟨Is, env, st, fr⟩𝔅 consists of

the four SECD components and a code block. The stack and

the environment are lists of runtime values, which include

natural numbers, the unit value (dummy), pairs, and closures

(a code label paired with a list of values).

3.2 Operational semantics
The small-step operational semantics of the instructions are

summarized in Table 1. For each instruction, if the machine

is in a state of the correct form and satisfies the condition

(described in the first row of each entry), then it steps into

the next state (the second row in each entry). For example, if

the top instruction is var x and the x-th variable is found on

the environment (i.e. env(x) = v), then the associated value

v is pushed on the stack and the machine moves on to the

next instruction.

Application and return. To execute an application, the

stack should contain a closure and an argument on the top,

where the closure’s label points to an instruction sequence Is′

in the code block𝔅. Then, the machine clears the stack, loads

the new instruction sequence Is′ and the new environment

formed by the values in the closure and the argument. The

current instructions, environment, and stack are saved on a

new call frame.

To return from a call, the stack must have a return value

on the top, and the machine restores the saved instructions,

environment, and stack from the call frames, then pushes

the return value on the restored stack.

Recursion. To execute recursion, the top stack item must

be a natural number. If the number is 0, the machine loads

the instructions pointed by the base case label 𝔏z. To sim-

plify the calling mechanism, TEAL does not support loading

a piece of code directly, but we can encode this feature as

feeding a function with a dummy input (the unit value) —

Types A,B,C ::= Unit | Nat | A → B | A × B

Expressions M,N ::= x | L M | 𝔏{M}
| ⟨M,N⟩ | fst M | snd M
| ⟨⟩ | zero | suc𝑀
| Rec(M, (x, p).M′,N)

Type contexts Γ ::= · | Γ, x:A

Label contexts 𝔇 ::= · | 𝔇,𝔏({Γ}, x:A ↦→ M : B)

Figure 4. Syntax of the specification language

the machine creates a closure with 𝔏z and the current en-

vironment, pushes the dummy value ⟨⟩ on the stack, and

immediately applies them.

When the top stack item equals 𝑛 = 𝑚 + 1, the machine

makes a closure for 𝔏s with the current environment and

𝑚, adds an app instruction to the instruction sequence, and

continues recursing over𝑚 (rule RecS). Every round of recur-

sion creates a closure for the successor case on the stack and

leaves an application instruction in the sequence. Eventually,

after reaching the base case, the successor case will then be

executed 𝑛 times through applications.

Notations. We write 𝐶 −→ 𝐶′
if configuration 𝐶 steps to

𝐶′
in one step, and𝐶 −→∗ 𝐶′

if𝐶 steps to𝐶′
in zero or more

steps. A machine terminates with value 𝑣 if the instruction

is ret, the top stack value is 𝑣 , and there is no call frame left.

4 Typed assembly language
In the example of the Ackermann function (Figure 1), each

code block has a type signature that specifies its intended

behaviour: repClo should return a closure, main should com-

pute acker{} (3, 4), etc.
In this section, we define the language of specifications,

a calculus that fully captures the computational aspects of

the assembly. We then give typing rules that simulate the

execution of the assembly code to check if the instructions

indeed meet the specification.

4.1 The specification language
The specification language of TEAL is a variation of Gödel’s

System T based on [Huang and Yallop 2023]. The syntax

of the language (Figure 4) includes the conventional vari-

ables, application, construction and projection for pairs, and

natural numbers with their recursor (as introduced in Sec-

tion 2). Our main departure is in the way that functions are

expressed.

Function labels. In conventional lambda calculus, we can

create functions with a lambda abstraction 𝜆𝑥 .𝑀 and evalu-

ate function applications with the substitution (𝜆𝑥 .𝑀) 𝑁 ⊲

𝑀 [𝑁 /𝑥], also known as the 𝛽-reduction. Since the assembly

language cannot arbitrarily introduce new functions, we use

3
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Rule Is env st fr Condition

Var var x ; Is env st fr env(x) = v
−→ Is env st :: v fr

Clo clo 𝑛 𝔏 ; Is env st :: v fr |v| = 𝑛

−→ Is env st :: 𝔏{v} fr

App app ; Is env st :: 𝔏{env′} :: v fr 𝔅(𝔏) = Is′

−→ Is′ env′ :: v · fr :: ⟨Is, env, st⟩
Ret ret env st :: v fr :: ⟨Is′, env′, st′⟩
−→ Is′ env′ :: v st′ fr

Pair pair ; Is env st :: v :: v′ fr
−→ Is env st :: ⟨v, v′⟩ fr

Fst fst ; Is env st :: ⟨v, v′⟩ fr
−→ Is env st :: v fr

Snd fst ; Is env st :: ⟨v, v′⟩ fr
−→ Is env st :: v′ fr

RecZ rec 𝔏z 𝔏s ; Is env st :: n fr 𝑛 = 0

−→ app ; Is env st :: 𝔏z{env} :: ⟨⟩ fr

RecS rec 𝔏z 𝔏s ; Is env st :: n fr 𝑛 =𝑚 + 1

−→ rec 𝔏z 𝔏s ; app ; Is env st :: 𝔏s{env :: m} :: m fr

Table 1. Operational semantics

a defunctionalized calculus that forbids lambda abstraction.

The only way to create functions is to form a closure with a

list of expressions and a code label 𝔏. The labels come from

a globally defined label context𝔇 that associates each label

with its type information and an expression that acts like

the function body.

A label-context entry 𝔏({∆}, x:A ↦→ L : B) is interpreted
as follows: 𝔏 points to a piece of code with free variables of

types ∆ (we view a context as a list of types), takes an input x
of type A, and the associated computation on x is N of type B.
A closure 𝔏{M} is interpreted as follows: the free variables

of 𝔏 are instantiated to M, and the application 𝔏{M} N
evaluates to L[M/∆,N/x] — substituting the instantiated

free variables and the argument into the function body.

Note that the syntax of a label-context entry is identical

to an assembly code block’s signature and a label context is

regarded as a collection of the specifications of an assembly

program.

Typing judgement. The types in the calculus includes

natural numbers, the unit type, products, and functions. We

use a inference-based judgement to define well-typed terms

for the specification calculus (Figure 6). The judgement takes

the form 𝔇; Γ ⊢ M : A, which means that expression M
is well-typed with type A under label context 𝔇 and type

context Γ (a list of variables and their associated types).

Figure 5 shows the typing rules: if the judgements or con-

ditions above the line are derivable or satisfied, then the rule

allows us to derive the judgement at the bottom. For example,

if we know that M has the product type A × B, then the rule

rule ty-Fst allows us to derive that the first projection of M
has type A.
Rule ty-Label states that a label formation is well-typed

if the label’s specification exists in 𝔇 and the types of the

list of expressions supplied match with the specification.

A recursor is well-typed if the term N to recurse on is

a natural number, the zero case M is a well-typed expres-

sion (of some result type C), the successor case M′
is typed

with C in the context extended by the predecessor x:Nat and
r:C, the result of result of applying the recursor to x (ty-Rec).

⊢ 𝔇 (Well-formedness)

wf-Empty

⊢ ·

wf-Label

𝔇;∆, x:A ⊢ M : B

⊢ 𝔇,𝔏({∆}, x:A ↦→ N : B)

The judgement for well-typed label context is ⊢ 𝔇, which

is required in all base cases like rule ty-Var and rule ty-

Unit to ensure that type judgements are always considered

in well-typed label contexts.

4.2 Typed stack machine
The specification calculus captures every kind of compu-

tation of the assembly. It gives us a way to describe the

behaviour of an instruction sequence abstractly. For exam-

ple, we know that var x copies the unknown value x on top of
the stack, and app applies the top two stack items together.

4
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𝔇; Γ ⊢ M : A (Typing)
ty-Var

x : A ∈ Γ ⊢ 𝔇
𝔇; Γ ⊢ x : A

ty-Unit

⊢ 𝔇
𝔇; Γ ⊢ ⟨⟩ : Unit

ty-Apply

𝔇; Γ ⊢ M : A → B
𝔇; Γ ⊢ N : A

𝔇; Γ ⊢ M N : B

ty-Label

𝔇; Γ ⊢ M : ∆
𝔏({∆}, x:A ↦→ M : B) ∈ 𝔇

𝔇; Γ ⊢ 𝔏{M} : A → B

ty-Fst

𝔇; Γ ⊢ M : A × B

𝔇; Γ ⊢ fst M : A

ty-Snd

𝔇; Γ ⊢ M : A × B

𝔇; Γ ⊢ snd M : B

ty-Rec

𝔇; Γ ⊢ N : Nat
𝔇; Γ ⊢ M : C

𝔇; Γ, x:Nat, p:C ⊢ M′
: C

𝔇; Γ ⊢ Rec(M, (x, p).M′,N) : C

Figure 5. Typing rules for the specification

Typing rules for assembly. We capture computations

using the judgement 𝔇; Γ ⊢ Is : 𝜎 → 𝜎 ′
(Figure 6). We

view 𝜎 , a list of open terms in the specification language,

as an abstract stack. The judgement reads: the instruction

(sequence) transits abstract stack from 𝜎 to 𝜎 ′
under the

presence of some code blocks with signatures𝔇 and some

runtime environment with values of types Γ.
The rules are then straightforward. The closure formation

clo 𝑛 𝔏 is modelled by 𝔏{M} (asm-ty-Clo), the application
app by the application in the calculus (asm-ty-Apply), and

recursion rec 𝔏z 𝔏s by the recursor (asm-ty-Rec), etc.

Well-formed machines. Notice that the stack machine’s

runtime values coincide with the closed terms in the calculus.

We can take a step further and extend the type judgements

to runtime values, environments, stacks, and machine con-

figurations. We write ⊢ 𝐶 for the judgement of well-formed

machine configurations, and leave the technical details in

appendix A. Intuitively, ⊢ ⟨Is, env, st, fr⟩𝔅 means that:

1. All signatures and instructions in code blocks 𝔅 are

well-typed, with𝔇 being the signature.

2. The current instruction sequence Is is well-typed and

produces a return value, i.e.𝔇; Γ ⊢ Is : 𝜎 → 𝜎 ′
:: M.

3. The runtime environment env has types Γ.
4. The runtime stack st is a concrete implementation of

𝜎 with respect to env.
5. The current instruction’s return value M is compatible

with its caller on the top frame of fr.

𝔇; Γ ⊢ Is : 𝜎 → 𝜎 ′ (Typing)
asm-ty-Var

x : A ∈ Γ

𝔇; Γ ⊢ var x : 𝜎 → 𝜎 :: x

asm-ty-Clo

𝔇; Γ ⊢ M : ∆ |∆| = 𝑛

𝔏({∆}, x:A ↦→ M : B) ∈ 𝔇

𝔇; Γ ⊢ clo 𝑛 𝔏 : 𝜎 :: M → 𝜎 :: 𝔏{M}

asm-ty-Apply

𝔇; Γ ⊢ M : A → B
𝔇; Γ ⊢ N : A

𝔇; Γ ⊢ app : 𝜎 :: M :: N → 𝜎 :: M N

asm-ty-Rec

𝔇; Γ ⊢ N : Nat
𝔏z ({Γ}, x:Unit ↦→ M : C) ∈ 𝔇

𝔏s ({Γ, x:Nat}, p:C ↦→ M′
: C) ∈ 𝔇

𝔇; Γ ⊢ rec 𝔏z 𝔏s : 𝜎 :: N → 𝜎 :: Rec(M, (x, p).M′,N)

asm-ty-Seq

𝔇; Γ ⊢ I : 𝜎 → 𝜎 ′ 𝔇; Γ ⊢ Is : 𝜎 ′ → 𝜎 ′′

𝔇; Γ ⊢ I ; Is : 𝜎 → 𝜎 ′′

asm-ty-Ret

𝔇; Γ ⊢ ret : 𝜎 :: M → 𝜎 :: M

Figure 6. Typing rules for the assembly

5 Total correctness
In this section, we discusses our total correctness property

and its relations with the standard properties of type safety

and termination.

For a typed system, type-safety means that if a program

is well-typed, then it will never get stuck at some erroneous

state. It is typically proved by proving progress (that well-

typed program either halts or takes one step) and preser-

vation (that a well-typed program remains well-typed after

taking one step). For our system, we consider progress and

preservation for well-formed machines.

Theorem 5.1 (Progress). If ⊢ 𝐶 , then either 𝐶 −→ 𝐶′ or 𝐶
terminates.

Theorem 5.2 (Preservation). If ⊢ 𝐶 and 𝐶 −→ 𝐶′, then
⊢ 𝐶′.

The two theorems are proved by induction over the well-

formedness judgement ⊢ 𝐶 . With the progress and preserva-

tion combined, we can see that a well-typed program either

halts or steps into another well-typed state, which will again
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either halts or keeps executing. In other words, a well-formed

machine will never get stuck.

Corollary 5.3 (Type safety). If ⊢ 𝐶 , then there is no stuck
configuration 𝐶′ such that 𝐶 −→∗ 𝐶′.

Since we specified the exact computational behaviour of

an instruction sequence, we naturally ask not just that “well-

typed programs will not go wrong”, but also that “well-typed

programs will do right” — if an instruction sequence is spec-

ified with return value v by its typing annotation, then exe-

cuting it is guaranteed to produce v on the top of the stack.

We call this property total correctness.
With our definition of well-formed machines, if we have

type safety, then we obtain partial correctness that guarantees
a program to compute the specified value if it terminates.

Indeed, if we have a well-typed program

𝔇; · ⊢ Is : · → 𝜎

and the execution of ⟨Is, ·, ·, ·⟩𝔅 terminates, then the final

state must be in the form of ⟨ret, ·, st′, ·⟩𝔅. By type-safety,

the final state is well-formed, which means that st′ is a con-
crete implementation of (st :: v) w.r.t. the empty context,

which implies that the top stack item equals to v. So, if all
well-typed programs terminate, then we obtain total correct-

ness as a corollary from type safety and termination.

To show termination, we follow Benton and Hur [2009]

in defining a logical relation (a type-indexed subset) which

contains all stack-instruction pairs that terminate when they

are executed with well-typed environment and call frames,

and show that if 𝔇; · ⊢ Is : · → 𝜎 :: v, then (·, Is) is in that

relation.

Theorem 5.4 (Termination). If 𝔇; · ⊢ Is : · → 𝜎 :: v, then
the machine terminates, i.e. ⟨Is, ·, ·, ·⟩𝔅 −→∗ ⟨ret, ·, st′, ·⟩𝔅.

Corollary 5.5 (Total correctness). If 𝔇; · ⊢ Is : · → 𝜎 :: v,
then ⟨Is, ·, ·, ·⟩𝔅 −→∗ ⟨ret, ·, st :: v, ·⟩𝔅.

6 Discussion
Related work. Typed intermediate languages have been

known to be useful in program analysis and optimization

since Tarditi et al. [1996]. We closely follow the develop-

ment of typed assembly languages (TAL) [Morrisett et al.

1998], first developed by Morrisett et al. [1998] as a compila-

tion target to preserve the type information from ML-like

type systems to the assembly level and focused on assigning

types to the assembly. The type safety of TAL is established

syntactically in Morrisett et al. [1998] and in many of its

variations [Crary et al. 1999; Morrisett et al. 2002], as well

as semantically in Ahmed et al. [2010]. We are not aware of

any study on the termination of TAL.

Our type system can be regarded as a relation between the

high-level specification calculus and the low-level machine

configuration. The type system of Shao et al. [2002] relates

terms in a dependently typed calculus with TAL. Benton and

Hur [2009] relates simply-typed lambda calculus with an

untyped SECD machine and established correctness for their

compilation scheme from the calculus to the assembly.

Compilation. The language in this article is designed

as a compilation target, but we have not yet specified the

compilation function. Compilation from Gödel’s System T

to TEAL consists of a defunctionalization stage [Reynolds

1972] that replaces lambda abstractions with labels, target-

ing the specification language of Section 4.1, followed by a

type-preserving translation from the specification language

to assembly code. In future work we plan to specify and

implement compilation.

Conclusions and Future work. We have presented a

typed total assembly language based on Gödel’s System T.

The principles underlying the design of our language nat-

urally extend to a wider class of typed languages, and we

plan to investigate their application to a variety of more

expressive systems, including

• polymorphic lambda calculus [Reynolds 1974], which
forms a basis for functional programming languages

such as Haskell, OCaml and Scala

• the calculus of constructions [Coquand and Huet 1988]
and other dependently typed systems, which underlie

dependently typed programming languages such as

Agda and Idris, and proof assistants such as Rocq and

Lean

• the computational meta-language [Moggi 1991] and

other effective calculi which support programs that

perform effects, and

• systems such as quantitative type theory [Atkey 2018]

that offer support for distinguishing logical terms from

computations, enabling efficient run-time representa-

tions.

We envisage a family of typed expressive assembly lan-

guages that make it possible to preserve types through com-

pilation for these and other calculi, offering stronger safety

guarantees and new optimisation opportunities.
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A Configuration well-formedness
𝔇 ⊢ 𝔅 (Code block typing)

asm-blocks-Nil

· ⊢ ·

asm-blocks-Cons

𝔇 ⊢ 𝔅 𝔇; Γ, x:A ⊢ Is : · → 𝜎 :: M

𝔇,𝔏({Γ}, x:A ↦→ M : B) ⊢ 𝔅;𝔏({Γ}, x:A ↦→ M : B) : Is

𝔇 ⊢ env : Γ (Runtime environment typing)

asm-env-Nil

𝔇 ⊢ · : ·

asm-env-Cons

𝔇 ⊢ env : Γ 𝔇; · ⊢ v : A

𝔇 ⊢ env :: v : Γ, x:A

𝔇; env : Γ ⊢ st : 𝜎 (Runtime stack typing)

asm-st-Nil

𝔇; env : Γ ⊢ · : ·

asm-st-Cons

𝔇; env : Γ ⊢ st : 𝜎 𝔇; Γ ⊢ M : A
𝔇; · ⊢ v : A 𝔇 ⊢ v ≡ M[env]
𝔇; env : Γ ⊢ st :: v : 𝜎 :: M

𝔇; env : Γ ⊢ fr : M (Call frames typing)

asm-frame-Nil

𝔇; · ⊢ v : A

𝔇; · : · ⊢ · : v

asm-frame-Cons

𝔇; env : Γ ⊢ fr : M
𝔇;∆ ⊢ Is : 𝜎 :: N → 𝜎 ′

:: N′

𝔇 ⊢ env′ : ∆
𝔇; env′ : ∆ ⊢ st : 𝜎

𝔇 ⊢ N′ [env′] ≡ M[env]
𝔇; env′ : ∆ ⊢ fr :: ⟨Is, env′, st⟩ : N

Definition A.1 (Configuration well-formedness). A config-
uration 𝐶 = ⟨Is, env, st, fr⟩𝔅 is well-formed, denoted as ⊢ 𝐶 , if
the following judgements hold:

1. 𝔇 ⊢ 𝔅, where𝔇 is the label context of 𝔅.
2. 𝔇; Γ ⊢ Is : 𝜎 → 𝜎 ′

:: M, for some Γ, 𝜎 , 𝜎 ′, and M.
3. 𝔇 ⊢ env : Γ.
4. 𝔇; env : Γ ⊢ st : 𝜎 .
5. 𝔇; env′ : ∆ ⊢ fr : N, for some env′, ∆, and N.
6. 𝔇 ⊢ N[env′] ≡ M[env].
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